| Step | Hyp | Ref | Expression | 
						
							| 1 |  | subrgascl.p | ⊢ 𝑃  =  ( 𝐼  mPoly  𝑅 ) | 
						
							| 2 |  | subrgascl.a | ⊢ 𝐴  =  ( algSc ‘ 𝑃 ) | 
						
							| 3 |  | subrgascl.h | ⊢ 𝐻  =  ( 𝑅  ↾s  𝑇 ) | 
						
							| 4 |  | subrgascl.u | ⊢ 𝑈  =  ( 𝐼  mPoly  𝐻 ) | 
						
							| 5 |  | subrgascl.i | ⊢ ( 𝜑  →  𝐼  ∈  𝑊 ) | 
						
							| 6 |  | subrgascl.r | ⊢ ( 𝜑  →  𝑇  ∈  ( SubRing ‘ 𝑅 ) ) | 
						
							| 7 |  | subrgascl.c | ⊢ 𝐶  =  ( algSc ‘ 𝑈 ) | 
						
							| 8 |  | eqid | ⊢ ( Scalar ‘ 𝑈 )  =  ( Scalar ‘ 𝑈 ) | 
						
							| 9 |  | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑈 ) )  =  ( Base ‘ ( Scalar ‘ 𝑈 ) ) | 
						
							| 10 | 7 8 9 | asclfn | ⊢ 𝐶  Fn  ( Base ‘ ( Scalar ‘ 𝑈 ) ) | 
						
							| 11 | 3 | subrgbas | ⊢ ( 𝑇  ∈  ( SubRing ‘ 𝑅 )  →  𝑇  =  ( Base ‘ 𝐻 ) ) | 
						
							| 12 | 6 11 | syl | ⊢ ( 𝜑  →  𝑇  =  ( Base ‘ 𝐻 ) ) | 
						
							| 13 | 3 | ovexi | ⊢ 𝐻  ∈  V | 
						
							| 14 | 13 | a1i | ⊢ ( 𝜑  →  𝐻  ∈  V ) | 
						
							| 15 | 4 5 14 | mplsca | ⊢ ( 𝜑  →  𝐻  =  ( Scalar ‘ 𝑈 ) ) | 
						
							| 16 | 15 | fveq2d | ⊢ ( 𝜑  →  ( Base ‘ 𝐻 )  =  ( Base ‘ ( Scalar ‘ 𝑈 ) ) ) | 
						
							| 17 | 12 16 | eqtrd | ⊢ ( 𝜑  →  𝑇  =  ( Base ‘ ( Scalar ‘ 𝑈 ) ) ) | 
						
							| 18 | 17 | fneq2d | ⊢ ( 𝜑  →  ( 𝐶  Fn  𝑇  ↔  𝐶  Fn  ( Base ‘ ( Scalar ‘ 𝑈 ) ) ) ) | 
						
							| 19 | 10 18 | mpbiri | ⊢ ( 𝜑  →  𝐶  Fn  𝑇 ) | 
						
							| 20 |  | eqid | ⊢ ( Scalar ‘ 𝑃 )  =  ( Scalar ‘ 𝑃 ) | 
						
							| 21 |  | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑃 ) )  =  ( Base ‘ ( Scalar ‘ 𝑃 ) ) | 
						
							| 22 | 2 20 21 | asclfn | ⊢ 𝐴  Fn  ( Base ‘ ( Scalar ‘ 𝑃 ) ) | 
						
							| 23 |  | subrgrcl | ⊢ ( 𝑇  ∈  ( SubRing ‘ 𝑅 )  →  𝑅  ∈  Ring ) | 
						
							| 24 | 6 23 | syl | ⊢ ( 𝜑  →  𝑅  ∈  Ring ) | 
						
							| 25 | 1 5 24 | mplsca | ⊢ ( 𝜑  →  𝑅  =  ( Scalar ‘ 𝑃 ) ) | 
						
							| 26 | 25 | fveq2d | ⊢ ( 𝜑  →  ( Base ‘ 𝑅 )  =  ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) | 
						
							| 27 | 26 | fneq2d | ⊢ ( 𝜑  →  ( 𝐴  Fn  ( Base ‘ 𝑅 )  ↔  𝐴  Fn  ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) ) | 
						
							| 28 | 22 27 | mpbiri | ⊢ ( 𝜑  →  𝐴  Fn  ( Base ‘ 𝑅 ) ) | 
						
							| 29 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 30 | 29 | subrgss | ⊢ ( 𝑇  ∈  ( SubRing ‘ 𝑅 )  →  𝑇  ⊆  ( Base ‘ 𝑅 ) ) | 
						
							| 31 | 6 30 | syl | ⊢ ( 𝜑  →  𝑇  ⊆  ( Base ‘ 𝑅 ) ) | 
						
							| 32 |  | fnssres | ⊢ ( ( 𝐴  Fn  ( Base ‘ 𝑅 )  ∧  𝑇  ⊆  ( Base ‘ 𝑅 ) )  →  ( 𝐴  ↾  𝑇 )  Fn  𝑇 ) | 
						
							| 33 | 28 31 32 | syl2anc | ⊢ ( 𝜑  →  ( 𝐴  ↾  𝑇 )  Fn  𝑇 ) | 
						
							| 34 |  | fvres | ⊢ ( 𝑥  ∈  𝑇  →  ( ( 𝐴  ↾  𝑇 ) ‘ 𝑥 )  =  ( 𝐴 ‘ 𝑥 ) ) | 
						
							| 35 | 34 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑇 )  →  ( ( 𝐴  ↾  𝑇 ) ‘ 𝑥 )  =  ( 𝐴 ‘ 𝑥 ) ) | 
						
							| 36 |  | eqid | ⊢ ( 0g ‘ 𝑅 )  =  ( 0g ‘ 𝑅 ) | 
						
							| 37 | 3 36 | subrg0 | ⊢ ( 𝑇  ∈  ( SubRing ‘ 𝑅 )  →  ( 0g ‘ 𝑅 )  =  ( 0g ‘ 𝐻 ) ) | 
						
							| 38 | 6 37 | syl | ⊢ ( 𝜑  →  ( 0g ‘ 𝑅 )  =  ( 0g ‘ 𝐻 ) ) | 
						
							| 39 | 38 | ifeq2d | ⊢ ( 𝜑  →  if ( 𝑦  =  ( 𝐼  ×  { 0 } ) ,  𝑥 ,  ( 0g ‘ 𝑅 ) )  =  if ( 𝑦  =  ( 𝐼  ×  { 0 } ) ,  𝑥 ,  ( 0g ‘ 𝐻 ) ) ) | 
						
							| 40 | 39 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑇 )  →  if ( 𝑦  =  ( 𝐼  ×  { 0 } ) ,  𝑥 ,  ( 0g ‘ 𝑅 ) )  =  if ( 𝑦  =  ( 𝐼  ×  { 0 } ) ,  𝑥 ,  ( 0g ‘ 𝐻 ) ) ) | 
						
							| 41 | 40 | mpteq2dv | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑇 )  →  ( 𝑦  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ↦  if ( 𝑦  =  ( 𝐼  ×  { 0 } ) ,  𝑥 ,  ( 0g ‘ 𝑅 ) ) )  =  ( 𝑦  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ↦  if ( 𝑦  =  ( 𝐼  ×  { 0 } ) ,  𝑥 ,  ( 0g ‘ 𝐻 ) ) ) ) | 
						
							| 42 |  | eqid | ⊢ { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  =  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } | 
						
							| 43 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑇 )  →  𝐼  ∈  𝑊 ) | 
						
							| 44 | 24 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑇 )  →  𝑅  ∈  Ring ) | 
						
							| 45 | 31 | sselda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑇 )  →  𝑥  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 46 | 1 42 36 29 2 43 44 45 | mplascl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑇 )  →  ( 𝐴 ‘ 𝑥 )  =  ( 𝑦  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ↦  if ( 𝑦  =  ( 𝐼  ×  { 0 } ) ,  𝑥 ,  ( 0g ‘ 𝑅 ) ) ) ) | 
						
							| 47 |  | eqid | ⊢ ( 0g ‘ 𝐻 )  =  ( 0g ‘ 𝐻 ) | 
						
							| 48 |  | eqid | ⊢ ( Base ‘ 𝐻 )  =  ( Base ‘ 𝐻 ) | 
						
							| 49 | 3 | subrgring | ⊢ ( 𝑇  ∈  ( SubRing ‘ 𝑅 )  →  𝐻  ∈  Ring ) | 
						
							| 50 | 6 49 | syl | ⊢ ( 𝜑  →  𝐻  ∈  Ring ) | 
						
							| 51 | 50 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑇 )  →  𝐻  ∈  Ring ) | 
						
							| 52 | 12 | eleq2d | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝑇  ↔  𝑥  ∈  ( Base ‘ 𝐻 ) ) ) | 
						
							| 53 | 52 | biimpa | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑇 )  →  𝑥  ∈  ( Base ‘ 𝐻 ) ) | 
						
							| 54 | 4 42 47 48 7 43 51 53 | mplascl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑇 )  →  ( 𝐶 ‘ 𝑥 )  =  ( 𝑦  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ↦  if ( 𝑦  =  ( 𝐼  ×  { 0 } ) ,  𝑥 ,  ( 0g ‘ 𝐻 ) ) ) ) | 
						
							| 55 | 41 46 54 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑇 )  →  ( 𝐴 ‘ 𝑥 )  =  ( 𝐶 ‘ 𝑥 ) ) | 
						
							| 56 | 35 55 | eqtr2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑇 )  →  ( 𝐶 ‘ 𝑥 )  =  ( ( 𝐴  ↾  𝑇 ) ‘ 𝑥 ) ) | 
						
							| 57 | 19 33 56 | eqfnfvd | ⊢ ( 𝜑  →  𝐶  =  ( 𝐴  ↾  𝑇 ) ) |