| Step | Hyp | Ref | Expression | 
						
							| 1 |  | subrgascl.p | ⊢ 𝑃  =  ( 𝐼  mPoly  𝑅 ) | 
						
							| 2 |  | subrgascl.a | ⊢ 𝐴  =  ( algSc ‘ 𝑃 ) | 
						
							| 3 |  | subrgascl.h | ⊢ 𝐻  =  ( 𝑅  ↾s  𝑇 ) | 
						
							| 4 |  | subrgascl.u | ⊢ 𝑈  =  ( 𝐼  mPoly  𝐻 ) | 
						
							| 5 |  | subrgascl.i | ⊢ ( 𝜑  →  𝐼  ∈  𝑊 ) | 
						
							| 6 |  | subrgascl.r | ⊢ ( 𝜑  →  𝑇  ∈  ( SubRing ‘ 𝑅 ) ) | 
						
							| 7 |  | subrgasclcl.b | ⊢ 𝐵  =  ( Base ‘ 𝑈 ) | 
						
							| 8 |  | subrgasclcl.k | ⊢ 𝐾  =  ( Base ‘ 𝑅 ) | 
						
							| 9 |  | subrgasclcl.x | ⊢ ( 𝜑  →  𝑋  ∈  𝐾 ) | 
						
							| 10 |  | iftrue | ⊢ ( 𝑥  =  ( 𝐼  ×  { 0 } )  →  if ( 𝑥  =  ( 𝐼  ×  { 0 } ) ,  𝑋 ,  ( 0g ‘ 𝑅 ) )  =  𝑋 ) | 
						
							| 11 | 10 | eleq1d | ⊢ ( 𝑥  =  ( 𝐼  ×  { 0 } )  →  ( if ( 𝑥  =  ( 𝐼  ×  { 0 } ) ,  𝑋 ,  ( 0g ‘ 𝑅 ) )  ∈  ( Base ‘ 𝐻 )  ↔  𝑋  ∈  ( Base ‘ 𝐻 ) ) ) | 
						
							| 12 |  | eqid | ⊢ ( 𝐼  mPwSer  𝐻 )  =  ( 𝐼  mPwSer  𝐻 ) | 
						
							| 13 |  | eqid | ⊢ ( Base ‘ 𝐻 )  =  ( Base ‘ 𝐻 ) | 
						
							| 14 |  | eqid | ⊢ { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  =  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } | 
						
							| 15 |  | eqid | ⊢ ( Base ‘ ( 𝐼  mPwSer  𝐻 ) )  =  ( Base ‘ ( 𝐼  mPwSer  𝐻 ) ) | 
						
							| 16 |  | eqid | ⊢ ( 0g ‘ 𝑅 )  =  ( 0g ‘ 𝑅 ) | 
						
							| 17 |  | subrgrcl | ⊢ ( 𝑇  ∈  ( SubRing ‘ 𝑅 )  →  𝑅  ∈  Ring ) | 
						
							| 18 | 6 17 | syl | ⊢ ( 𝜑  →  𝑅  ∈  Ring ) | 
						
							| 19 | 1 14 16 8 2 5 18 9 | mplascl | ⊢ ( 𝜑  →  ( 𝐴 ‘ 𝑋 )  =  ( 𝑥  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ↦  if ( 𝑥  =  ( 𝐼  ×  { 0 } ) ,  𝑋 ,  ( 0g ‘ 𝑅 ) ) ) ) | 
						
							| 20 | 19 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐴 ‘ 𝑋 )  ∈  𝐵 )  →  ( 𝐴 ‘ 𝑋 )  =  ( 𝑥  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ↦  if ( 𝑥  =  ( 𝐼  ×  { 0 } ) ,  𝑋 ,  ( 0g ‘ 𝑅 ) ) ) ) | 
						
							| 21 | 3 | subrgring | ⊢ ( 𝑇  ∈  ( SubRing ‘ 𝑅 )  →  𝐻  ∈  Ring ) | 
						
							| 22 | 6 21 | syl | ⊢ ( 𝜑  →  𝐻  ∈  Ring ) | 
						
							| 23 | 12 4 7 5 22 | mplsubrg | ⊢ ( 𝜑  →  𝐵  ∈  ( SubRing ‘ ( 𝐼  mPwSer  𝐻 ) ) ) | 
						
							| 24 | 15 | subrgss | ⊢ ( 𝐵  ∈  ( SubRing ‘ ( 𝐼  mPwSer  𝐻 ) )  →  𝐵  ⊆  ( Base ‘ ( 𝐼  mPwSer  𝐻 ) ) ) | 
						
							| 25 | 23 24 | syl | ⊢ ( 𝜑  →  𝐵  ⊆  ( Base ‘ ( 𝐼  mPwSer  𝐻 ) ) ) | 
						
							| 26 | 25 | sselda | ⊢ ( ( 𝜑  ∧  ( 𝐴 ‘ 𝑋 )  ∈  𝐵 )  →  ( 𝐴 ‘ 𝑋 )  ∈  ( Base ‘ ( 𝐼  mPwSer  𝐻 ) ) ) | 
						
							| 27 | 20 26 | eqeltrrd | ⊢ ( ( 𝜑  ∧  ( 𝐴 ‘ 𝑋 )  ∈  𝐵 )  →  ( 𝑥  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ↦  if ( 𝑥  =  ( 𝐼  ×  { 0 } ) ,  𝑋 ,  ( 0g ‘ 𝑅 ) ) )  ∈  ( Base ‘ ( 𝐼  mPwSer  𝐻 ) ) ) | 
						
							| 28 | 12 13 14 15 27 | psrelbas | ⊢ ( ( 𝜑  ∧  ( 𝐴 ‘ 𝑋 )  ∈  𝐵 )  →  ( 𝑥  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ↦  if ( 𝑥  =  ( 𝐼  ×  { 0 } ) ,  𝑋 ,  ( 0g ‘ 𝑅 ) ) ) : { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } ⟶ ( Base ‘ 𝐻 ) ) | 
						
							| 29 |  | eqid | ⊢ ( 𝑥  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ↦  if ( 𝑥  =  ( 𝐼  ×  { 0 } ) ,  𝑋 ,  ( 0g ‘ 𝑅 ) ) )  =  ( 𝑥  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ↦  if ( 𝑥  =  ( 𝐼  ×  { 0 } ) ,  𝑋 ,  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 30 | 29 | fmpt | ⊢ ( ∀ 𝑥  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } if ( 𝑥  =  ( 𝐼  ×  { 0 } ) ,  𝑋 ,  ( 0g ‘ 𝑅 ) )  ∈  ( Base ‘ 𝐻 )  ↔  ( 𝑥  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ↦  if ( 𝑥  =  ( 𝐼  ×  { 0 } ) ,  𝑋 ,  ( 0g ‘ 𝑅 ) ) ) : { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } ⟶ ( Base ‘ 𝐻 ) ) | 
						
							| 31 | 28 30 | sylibr | ⊢ ( ( 𝜑  ∧  ( 𝐴 ‘ 𝑋 )  ∈  𝐵 )  →  ∀ 𝑥  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } if ( 𝑥  =  ( 𝐼  ×  { 0 } ) ,  𝑋 ,  ( 0g ‘ 𝑅 ) )  ∈  ( Base ‘ 𝐻 ) ) | 
						
							| 32 | 5 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐴 ‘ 𝑋 )  ∈  𝐵 )  →  𝐼  ∈  𝑊 ) | 
						
							| 33 | 14 | psrbag0 | ⊢ ( 𝐼  ∈  𝑊  →  ( 𝐼  ×  { 0 } )  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } ) | 
						
							| 34 | 32 33 | syl | ⊢ ( ( 𝜑  ∧  ( 𝐴 ‘ 𝑋 )  ∈  𝐵 )  →  ( 𝐼  ×  { 0 } )  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } ) | 
						
							| 35 | 11 31 34 | rspcdva | ⊢ ( ( 𝜑  ∧  ( 𝐴 ‘ 𝑋 )  ∈  𝐵 )  →  𝑋  ∈  ( Base ‘ 𝐻 ) ) | 
						
							| 36 | 3 | subrgbas | ⊢ ( 𝑇  ∈  ( SubRing ‘ 𝑅 )  →  𝑇  =  ( Base ‘ 𝐻 ) ) | 
						
							| 37 | 6 36 | syl | ⊢ ( 𝜑  →  𝑇  =  ( Base ‘ 𝐻 ) ) | 
						
							| 38 | 37 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐴 ‘ 𝑋 )  ∈  𝐵 )  →  𝑇  =  ( Base ‘ 𝐻 ) ) | 
						
							| 39 | 35 38 | eleqtrrd | ⊢ ( ( 𝜑  ∧  ( 𝐴 ‘ 𝑋 )  ∈  𝐵 )  →  𝑋  ∈  𝑇 ) | 
						
							| 40 |  | eqid | ⊢ ( algSc ‘ 𝑈 )  =  ( algSc ‘ 𝑈 ) | 
						
							| 41 | 1 2 3 4 5 6 40 | subrgascl | ⊢ ( 𝜑  →  ( algSc ‘ 𝑈 )  =  ( 𝐴  ↾  𝑇 ) ) | 
						
							| 42 | 41 | fveq1d | ⊢ ( 𝜑  →  ( ( algSc ‘ 𝑈 ) ‘ 𝑋 )  =  ( ( 𝐴  ↾  𝑇 ) ‘ 𝑋 ) ) | 
						
							| 43 |  | fvres | ⊢ ( 𝑋  ∈  𝑇  →  ( ( 𝐴  ↾  𝑇 ) ‘ 𝑋 )  =  ( 𝐴 ‘ 𝑋 ) ) | 
						
							| 44 | 42 43 | sylan9eq | ⊢ ( ( 𝜑  ∧  𝑋  ∈  𝑇 )  →  ( ( algSc ‘ 𝑈 ) ‘ 𝑋 )  =  ( 𝐴 ‘ 𝑋 ) ) | 
						
							| 45 |  | eqid | ⊢ ( Scalar ‘ 𝑈 )  =  ( Scalar ‘ 𝑈 ) | 
						
							| 46 | 4 | mplring | ⊢ ( ( 𝐼  ∈  𝑊  ∧  𝐻  ∈  Ring )  →  𝑈  ∈  Ring ) | 
						
							| 47 | 4 | mpllmod | ⊢ ( ( 𝐼  ∈  𝑊  ∧  𝐻  ∈  Ring )  →  𝑈  ∈  LMod ) | 
						
							| 48 |  | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑈 ) )  =  ( Base ‘ ( Scalar ‘ 𝑈 ) ) | 
						
							| 49 | 40 45 46 47 48 7 | asclf | ⊢ ( ( 𝐼  ∈  𝑊  ∧  𝐻  ∈  Ring )  →  ( algSc ‘ 𝑈 ) : ( Base ‘ ( Scalar ‘ 𝑈 ) ) ⟶ 𝐵 ) | 
						
							| 50 | 5 22 49 | syl2anc | ⊢ ( 𝜑  →  ( algSc ‘ 𝑈 ) : ( Base ‘ ( Scalar ‘ 𝑈 ) ) ⟶ 𝐵 ) | 
						
							| 51 | 50 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ∈  𝑇 )  →  ( algSc ‘ 𝑈 ) : ( Base ‘ ( Scalar ‘ 𝑈 ) ) ⟶ 𝐵 ) | 
						
							| 52 | 4 5 22 | mplsca | ⊢ ( 𝜑  →  𝐻  =  ( Scalar ‘ 𝑈 ) ) | 
						
							| 53 | 52 | fveq2d | ⊢ ( 𝜑  →  ( Base ‘ 𝐻 )  =  ( Base ‘ ( Scalar ‘ 𝑈 ) ) ) | 
						
							| 54 | 37 53 | eqtrd | ⊢ ( 𝜑  →  𝑇  =  ( Base ‘ ( Scalar ‘ 𝑈 ) ) ) | 
						
							| 55 | 54 | eleq2d | ⊢ ( 𝜑  →  ( 𝑋  ∈  𝑇  ↔  𝑋  ∈  ( Base ‘ ( Scalar ‘ 𝑈 ) ) ) ) | 
						
							| 56 | 55 | biimpa | ⊢ ( ( 𝜑  ∧  𝑋  ∈  𝑇 )  →  𝑋  ∈  ( Base ‘ ( Scalar ‘ 𝑈 ) ) ) | 
						
							| 57 | 51 56 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑋  ∈  𝑇 )  →  ( ( algSc ‘ 𝑈 ) ‘ 𝑋 )  ∈  𝐵 ) | 
						
							| 58 | 44 57 | eqeltrrd | ⊢ ( ( 𝜑  ∧  𝑋  ∈  𝑇 )  →  ( 𝐴 ‘ 𝑋 )  ∈  𝐵 ) | 
						
							| 59 | 39 58 | impbida | ⊢ ( 𝜑  →  ( ( 𝐴 ‘ 𝑋 )  ∈  𝐵  ↔  𝑋  ∈  𝑇 ) ) |