Metamath Proof Explorer


Theorem subrgbas

Description: Base set of a subring structure. (Contributed by Stefan O'Rear, 27-Nov-2014)

Ref Expression
Hypothesis subrgbas.b 𝑆 = ( 𝑅s 𝐴 )
Assertion subrgbas ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝐴 = ( Base ‘ 𝑆 ) )

Proof

Step Hyp Ref Expression
1 subrgbas.b 𝑆 = ( 𝑅s 𝐴 )
2 subrgsubg ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝐴 ∈ ( SubGrp ‘ 𝑅 ) )
3 1 subgbas ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) → 𝐴 = ( Base ‘ 𝑆 ) )
4 2 3 syl ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝐴 = ( Base ‘ 𝑆 ) )