| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subrgring.1 |
⊢ 𝑆 = ( 𝑅 ↾s 𝐴 ) |
| 2 |
1
|
subrgring |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝑆 ∈ Ring ) |
| 3 |
2
|
adantl |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) → 𝑆 ∈ Ring ) |
| 4 |
|
eqid |
⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) |
| 5 |
1 4
|
mgpress |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) → ( ( mulGrp ‘ 𝑅 ) ↾s 𝐴 ) = ( mulGrp ‘ 𝑆 ) ) |
| 6 |
4
|
crngmgp |
⊢ ( 𝑅 ∈ CRing → ( mulGrp ‘ 𝑅 ) ∈ CMnd ) |
| 7 |
|
eqid |
⊢ ( mulGrp ‘ 𝑆 ) = ( mulGrp ‘ 𝑆 ) |
| 8 |
7
|
ringmgp |
⊢ ( 𝑆 ∈ Ring → ( mulGrp ‘ 𝑆 ) ∈ Mnd ) |
| 9 |
3 8
|
syl |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) → ( mulGrp ‘ 𝑆 ) ∈ Mnd ) |
| 10 |
5 9
|
eqeltrd |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) → ( ( mulGrp ‘ 𝑅 ) ↾s 𝐴 ) ∈ Mnd ) |
| 11 |
|
eqid |
⊢ ( ( mulGrp ‘ 𝑅 ) ↾s 𝐴 ) = ( ( mulGrp ‘ 𝑅 ) ↾s 𝐴 ) |
| 12 |
11
|
subcmn |
⊢ ( ( ( mulGrp ‘ 𝑅 ) ∈ CMnd ∧ ( ( mulGrp ‘ 𝑅 ) ↾s 𝐴 ) ∈ Mnd ) → ( ( mulGrp ‘ 𝑅 ) ↾s 𝐴 ) ∈ CMnd ) |
| 13 |
6 10 12
|
syl2an2r |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) → ( ( mulGrp ‘ 𝑅 ) ↾s 𝐴 ) ∈ CMnd ) |
| 14 |
5 13
|
eqeltrrd |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) → ( mulGrp ‘ 𝑆 ) ∈ CMnd ) |
| 15 |
7
|
iscrng |
⊢ ( 𝑆 ∈ CRing ↔ ( 𝑆 ∈ Ring ∧ ( mulGrp ‘ 𝑆 ) ∈ CMnd ) ) |
| 16 |
3 14 15
|
sylanbrc |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) → 𝑆 ∈ CRing ) |