Step |
Hyp |
Ref |
Expression |
1 |
|
subrgdv.1 |
⊢ 𝑆 = ( 𝑅 ↾s 𝐴 ) |
2 |
|
subrgdv.2 |
⊢ / = ( /r ‘ 𝑅 ) |
3 |
|
subrgdv.3 |
⊢ 𝑈 = ( Unit ‘ 𝑆 ) |
4 |
|
subrgdv.4 |
⊢ 𝐸 = ( /r ‘ 𝑆 ) |
5 |
|
eqid |
⊢ ( invr ‘ 𝑅 ) = ( invr ‘ 𝑅 ) |
6 |
|
eqid |
⊢ ( invr ‘ 𝑆 ) = ( invr ‘ 𝑆 ) |
7 |
1 5 3 6
|
subrginv |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑌 ∈ 𝑈 ) → ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) = ( ( invr ‘ 𝑆 ) ‘ 𝑌 ) ) |
8 |
7
|
3adant2 |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑈 ) → ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) = ( ( invr ‘ 𝑆 ) ‘ 𝑌 ) ) |
9 |
8
|
oveq2d |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑈 ) → ( 𝑋 ( .r ‘ 𝑅 ) ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) ) = ( 𝑋 ( .r ‘ 𝑅 ) ( ( invr ‘ 𝑆 ) ‘ 𝑌 ) ) ) |
10 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
11 |
1 10
|
ressmulr |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( .r ‘ 𝑅 ) = ( .r ‘ 𝑆 ) ) |
12 |
11
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑈 ) → ( .r ‘ 𝑅 ) = ( .r ‘ 𝑆 ) ) |
13 |
12
|
oveqd |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑈 ) → ( 𝑋 ( .r ‘ 𝑅 ) ( ( invr ‘ 𝑆 ) ‘ 𝑌 ) ) = ( 𝑋 ( .r ‘ 𝑆 ) ( ( invr ‘ 𝑆 ) ‘ 𝑌 ) ) ) |
14 |
9 13
|
eqtrd |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑈 ) → ( 𝑋 ( .r ‘ 𝑅 ) ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) ) = ( 𝑋 ( .r ‘ 𝑆 ) ( ( invr ‘ 𝑆 ) ‘ 𝑌 ) ) ) |
15 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
16 |
15
|
subrgss |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝐴 ⊆ ( Base ‘ 𝑅 ) ) |
17 |
16
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑈 ) → 𝐴 ⊆ ( Base ‘ 𝑅 ) ) |
18 |
|
simp2 |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑈 ) → 𝑋 ∈ 𝐴 ) |
19 |
17 18
|
sseldd |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑈 ) → 𝑋 ∈ ( Base ‘ 𝑅 ) ) |
20 |
|
eqid |
⊢ ( Unit ‘ 𝑅 ) = ( Unit ‘ 𝑅 ) |
21 |
1 20 3
|
subrguss |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝑈 ⊆ ( Unit ‘ 𝑅 ) ) |
22 |
21
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑈 ) → 𝑈 ⊆ ( Unit ‘ 𝑅 ) ) |
23 |
|
simp3 |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑈 ) → 𝑌 ∈ 𝑈 ) |
24 |
22 23
|
sseldd |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑈 ) → 𝑌 ∈ ( Unit ‘ 𝑅 ) ) |
25 |
15 10 20 5 2
|
dvrval |
⊢ ( ( 𝑋 ∈ ( Base ‘ 𝑅 ) ∧ 𝑌 ∈ ( Unit ‘ 𝑅 ) ) → ( 𝑋 / 𝑌 ) = ( 𝑋 ( .r ‘ 𝑅 ) ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) ) ) |
26 |
19 24 25
|
syl2anc |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑈 ) → ( 𝑋 / 𝑌 ) = ( 𝑋 ( .r ‘ 𝑅 ) ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) ) ) |
27 |
1
|
subrgbas |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝐴 = ( Base ‘ 𝑆 ) ) |
28 |
27
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑈 ) → 𝐴 = ( Base ‘ 𝑆 ) ) |
29 |
18 28
|
eleqtrd |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑈 ) → 𝑋 ∈ ( Base ‘ 𝑆 ) ) |
30 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
31 |
|
eqid |
⊢ ( .r ‘ 𝑆 ) = ( .r ‘ 𝑆 ) |
32 |
30 31 3 6 4
|
dvrval |
⊢ ( ( 𝑋 ∈ ( Base ‘ 𝑆 ) ∧ 𝑌 ∈ 𝑈 ) → ( 𝑋 𝐸 𝑌 ) = ( 𝑋 ( .r ‘ 𝑆 ) ( ( invr ‘ 𝑆 ) ‘ 𝑌 ) ) ) |
33 |
29 23 32
|
syl2anc |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑈 ) → ( 𝑋 𝐸 𝑌 ) = ( 𝑋 ( .r ‘ 𝑆 ) ( ( invr ‘ 𝑆 ) ‘ 𝑌 ) ) ) |
34 |
14 26 33
|
3eqtr4d |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑈 ) → ( 𝑋 / 𝑌 ) = ( 𝑋 𝐸 𝑌 ) ) |