| Step | Hyp | Ref | Expression | 
						
							| 1 |  | subrgdvds.1 | ⊢ 𝑆  =  ( 𝑅  ↾s  𝐴 ) | 
						
							| 2 |  | subrgdvds.2 | ⊢  ∥   =  ( ∥r ‘ 𝑅 ) | 
						
							| 3 |  | subrgdvds.3 | ⊢ 𝐸  =  ( ∥r ‘ 𝑆 ) | 
						
							| 4 | 3 | reldvdsr | ⊢ Rel  𝐸 | 
						
							| 5 | 4 | a1i | ⊢ ( 𝐴  ∈  ( SubRing ‘ 𝑅 )  →  Rel  𝐸 ) | 
						
							| 6 | 1 | subrgbas | ⊢ ( 𝐴  ∈  ( SubRing ‘ 𝑅 )  →  𝐴  =  ( Base ‘ 𝑆 ) ) | 
						
							| 7 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 8 | 7 | subrgss | ⊢ ( 𝐴  ∈  ( SubRing ‘ 𝑅 )  →  𝐴  ⊆  ( Base ‘ 𝑅 ) ) | 
						
							| 9 | 6 8 | eqsstrrd | ⊢ ( 𝐴  ∈  ( SubRing ‘ 𝑅 )  →  ( Base ‘ 𝑆 )  ⊆  ( Base ‘ 𝑅 ) ) | 
						
							| 10 | 9 | sseld | ⊢ ( 𝐴  ∈  ( SubRing ‘ 𝑅 )  →  ( 𝑥  ∈  ( Base ‘ 𝑆 )  →  𝑥  ∈  ( Base ‘ 𝑅 ) ) ) | 
						
							| 11 |  | eqid | ⊢ ( .r ‘ 𝑅 )  =  ( .r ‘ 𝑅 ) | 
						
							| 12 | 1 11 | ressmulr | ⊢ ( 𝐴  ∈  ( SubRing ‘ 𝑅 )  →  ( .r ‘ 𝑅 )  =  ( .r ‘ 𝑆 ) ) | 
						
							| 13 | 12 | oveqd | ⊢ ( 𝐴  ∈  ( SubRing ‘ 𝑅 )  →  ( 𝑧 ( .r ‘ 𝑅 ) 𝑥 )  =  ( 𝑧 ( .r ‘ 𝑆 ) 𝑥 ) ) | 
						
							| 14 | 13 | eqeq1d | ⊢ ( 𝐴  ∈  ( SubRing ‘ 𝑅 )  →  ( ( 𝑧 ( .r ‘ 𝑅 ) 𝑥 )  =  𝑦  ↔  ( 𝑧 ( .r ‘ 𝑆 ) 𝑥 )  =  𝑦 ) ) | 
						
							| 15 | 14 | rexbidv | ⊢ ( 𝐴  ∈  ( SubRing ‘ 𝑅 )  →  ( ∃ 𝑧  ∈  ( Base ‘ 𝑆 ) ( 𝑧 ( .r ‘ 𝑅 ) 𝑥 )  =  𝑦  ↔  ∃ 𝑧  ∈  ( Base ‘ 𝑆 ) ( 𝑧 ( .r ‘ 𝑆 ) 𝑥 )  =  𝑦 ) ) | 
						
							| 16 |  | ssrexv | ⊢ ( ( Base ‘ 𝑆 )  ⊆  ( Base ‘ 𝑅 )  →  ( ∃ 𝑧  ∈  ( Base ‘ 𝑆 ) ( 𝑧 ( .r ‘ 𝑅 ) 𝑥 )  =  𝑦  →  ∃ 𝑧  ∈  ( Base ‘ 𝑅 ) ( 𝑧 ( .r ‘ 𝑅 ) 𝑥 )  =  𝑦 ) ) | 
						
							| 17 | 9 16 | syl | ⊢ ( 𝐴  ∈  ( SubRing ‘ 𝑅 )  →  ( ∃ 𝑧  ∈  ( Base ‘ 𝑆 ) ( 𝑧 ( .r ‘ 𝑅 ) 𝑥 )  =  𝑦  →  ∃ 𝑧  ∈  ( Base ‘ 𝑅 ) ( 𝑧 ( .r ‘ 𝑅 ) 𝑥 )  =  𝑦 ) ) | 
						
							| 18 | 15 17 | sylbird | ⊢ ( 𝐴  ∈  ( SubRing ‘ 𝑅 )  →  ( ∃ 𝑧  ∈  ( Base ‘ 𝑆 ) ( 𝑧 ( .r ‘ 𝑆 ) 𝑥 )  =  𝑦  →  ∃ 𝑧  ∈  ( Base ‘ 𝑅 ) ( 𝑧 ( .r ‘ 𝑅 ) 𝑥 )  =  𝑦 ) ) | 
						
							| 19 | 10 18 | anim12d | ⊢ ( 𝐴  ∈  ( SubRing ‘ 𝑅 )  →  ( ( 𝑥  ∈  ( Base ‘ 𝑆 )  ∧  ∃ 𝑧  ∈  ( Base ‘ 𝑆 ) ( 𝑧 ( .r ‘ 𝑆 ) 𝑥 )  =  𝑦 )  →  ( 𝑥  ∈  ( Base ‘ 𝑅 )  ∧  ∃ 𝑧  ∈  ( Base ‘ 𝑅 ) ( 𝑧 ( .r ‘ 𝑅 ) 𝑥 )  =  𝑦 ) ) ) | 
						
							| 20 |  | eqid | ⊢ ( Base ‘ 𝑆 )  =  ( Base ‘ 𝑆 ) | 
						
							| 21 |  | eqid | ⊢ ( .r ‘ 𝑆 )  =  ( .r ‘ 𝑆 ) | 
						
							| 22 | 20 3 21 | dvdsr | ⊢ ( 𝑥 𝐸 𝑦  ↔  ( 𝑥  ∈  ( Base ‘ 𝑆 )  ∧  ∃ 𝑧  ∈  ( Base ‘ 𝑆 ) ( 𝑧 ( .r ‘ 𝑆 ) 𝑥 )  =  𝑦 ) ) | 
						
							| 23 | 7 2 11 | dvdsr | ⊢ ( 𝑥  ∥  𝑦  ↔  ( 𝑥  ∈  ( Base ‘ 𝑅 )  ∧  ∃ 𝑧  ∈  ( Base ‘ 𝑅 ) ( 𝑧 ( .r ‘ 𝑅 ) 𝑥 )  =  𝑦 ) ) | 
						
							| 24 | 19 22 23 | 3imtr4g | ⊢ ( 𝐴  ∈  ( SubRing ‘ 𝑅 )  →  ( 𝑥 𝐸 𝑦  →  𝑥  ∥  𝑦 ) ) | 
						
							| 25 |  | df-br | ⊢ ( 𝑥 𝐸 𝑦  ↔  〈 𝑥 ,  𝑦 〉  ∈  𝐸 ) | 
						
							| 26 |  | df-br | ⊢ ( 𝑥  ∥  𝑦  ↔  〈 𝑥 ,  𝑦 〉  ∈   ∥  ) | 
						
							| 27 | 24 25 26 | 3imtr3g | ⊢ ( 𝐴  ∈  ( SubRing ‘ 𝑅 )  →  ( 〈 𝑥 ,  𝑦 〉  ∈  𝐸  →  〈 𝑥 ,  𝑦 〉  ∈   ∥  ) ) | 
						
							| 28 | 5 27 | relssdv | ⊢ ( 𝐴  ∈  ( SubRing ‘ 𝑅 )  →  𝐸  ⊆   ∥  ) |