Step |
Hyp |
Ref |
Expression |
1 |
|
subrgdvds.1 |
⊢ 𝑆 = ( 𝑅 ↾s 𝐴 ) |
2 |
|
subrgdvds.2 |
⊢ ∥ = ( ∥r ‘ 𝑅 ) |
3 |
|
subrgdvds.3 |
⊢ 𝐸 = ( ∥r ‘ 𝑆 ) |
4 |
3
|
reldvdsr |
⊢ Rel 𝐸 |
5 |
4
|
a1i |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → Rel 𝐸 ) |
6 |
1
|
subrgbas |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝐴 = ( Base ‘ 𝑆 ) ) |
7 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
8 |
7
|
subrgss |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝐴 ⊆ ( Base ‘ 𝑅 ) ) |
9 |
6 8
|
eqsstrrd |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( Base ‘ 𝑆 ) ⊆ ( Base ‘ 𝑅 ) ) |
10 |
9
|
sseld |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( 𝑥 ∈ ( Base ‘ 𝑆 ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) ) |
11 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
12 |
1 11
|
ressmulr |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( .r ‘ 𝑅 ) = ( .r ‘ 𝑆 ) ) |
13 |
12
|
oveqd |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( 𝑧 ( .r ‘ 𝑅 ) 𝑥 ) = ( 𝑧 ( .r ‘ 𝑆 ) 𝑥 ) ) |
14 |
13
|
eqeq1d |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( ( 𝑧 ( .r ‘ 𝑅 ) 𝑥 ) = 𝑦 ↔ ( 𝑧 ( .r ‘ 𝑆 ) 𝑥 ) = 𝑦 ) ) |
15 |
14
|
rexbidv |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( ∃ 𝑧 ∈ ( Base ‘ 𝑆 ) ( 𝑧 ( .r ‘ 𝑅 ) 𝑥 ) = 𝑦 ↔ ∃ 𝑧 ∈ ( Base ‘ 𝑆 ) ( 𝑧 ( .r ‘ 𝑆 ) 𝑥 ) = 𝑦 ) ) |
16 |
|
ssrexv |
⊢ ( ( Base ‘ 𝑆 ) ⊆ ( Base ‘ 𝑅 ) → ( ∃ 𝑧 ∈ ( Base ‘ 𝑆 ) ( 𝑧 ( .r ‘ 𝑅 ) 𝑥 ) = 𝑦 → ∃ 𝑧 ∈ ( Base ‘ 𝑅 ) ( 𝑧 ( .r ‘ 𝑅 ) 𝑥 ) = 𝑦 ) ) |
17 |
9 16
|
syl |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( ∃ 𝑧 ∈ ( Base ‘ 𝑆 ) ( 𝑧 ( .r ‘ 𝑅 ) 𝑥 ) = 𝑦 → ∃ 𝑧 ∈ ( Base ‘ 𝑅 ) ( 𝑧 ( .r ‘ 𝑅 ) 𝑥 ) = 𝑦 ) ) |
18 |
15 17
|
sylbird |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( ∃ 𝑧 ∈ ( Base ‘ 𝑆 ) ( 𝑧 ( .r ‘ 𝑆 ) 𝑥 ) = 𝑦 → ∃ 𝑧 ∈ ( Base ‘ 𝑅 ) ( 𝑧 ( .r ‘ 𝑅 ) 𝑥 ) = 𝑦 ) ) |
19 |
10 18
|
anim12d |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ ∃ 𝑧 ∈ ( Base ‘ 𝑆 ) ( 𝑧 ( .r ‘ 𝑆 ) 𝑥 ) = 𝑦 ) → ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ ∃ 𝑧 ∈ ( Base ‘ 𝑅 ) ( 𝑧 ( .r ‘ 𝑅 ) 𝑥 ) = 𝑦 ) ) ) |
20 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
21 |
|
eqid |
⊢ ( .r ‘ 𝑆 ) = ( .r ‘ 𝑆 ) |
22 |
20 3 21
|
dvdsr |
⊢ ( 𝑥 𝐸 𝑦 ↔ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ ∃ 𝑧 ∈ ( Base ‘ 𝑆 ) ( 𝑧 ( .r ‘ 𝑆 ) 𝑥 ) = 𝑦 ) ) |
23 |
7 2 11
|
dvdsr |
⊢ ( 𝑥 ∥ 𝑦 ↔ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ ∃ 𝑧 ∈ ( Base ‘ 𝑅 ) ( 𝑧 ( .r ‘ 𝑅 ) 𝑥 ) = 𝑦 ) ) |
24 |
19 22 23
|
3imtr4g |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( 𝑥 𝐸 𝑦 → 𝑥 ∥ 𝑦 ) ) |
25 |
|
df-br |
⊢ ( 𝑥 𝐸 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝐸 ) |
26 |
|
df-br |
⊢ ( 𝑥 ∥ 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ ∥ ) |
27 |
24 25 26
|
3imtr3g |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( 〈 𝑥 , 𝑦 〉 ∈ 𝐸 → 〈 𝑥 , 𝑦 〉 ∈ ∥ ) ) |
28 |
5 27
|
relssdv |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝐸 ⊆ ∥ ) |