Description: Every ring is a subring of itself. (Contributed by Stefan O'Rear, 30-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | subrgss.1 | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| Assertion | subrgid | ⊢ ( 𝑅 ∈ Ring → 𝐵 ∈ ( SubRing ‘ 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrgss.1 | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | id | ⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Ring ) | |
| 3 | 1 | ressid | ⊢ ( 𝑅 ∈ Ring → ( 𝑅 ↾s 𝐵 ) = 𝑅 ) |
| 4 | 3 2 | eqeltrd | ⊢ ( 𝑅 ∈ Ring → ( 𝑅 ↾s 𝐵 ) ∈ Ring ) |
| 5 | eqid | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) | |
| 6 | 1 5 | ringidcl | ⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ 𝐵 ) |
| 7 | ssid | ⊢ 𝐵 ⊆ 𝐵 | |
| 8 | 6 7 | jctil | ⊢ ( 𝑅 ∈ Ring → ( 𝐵 ⊆ 𝐵 ∧ ( 1r ‘ 𝑅 ) ∈ 𝐵 ) ) |
| 9 | 1 5 | issubrg | ⊢ ( 𝐵 ∈ ( SubRing ‘ 𝑅 ) ↔ ( ( 𝑅 ∈ Ring ∧ ( 𝑅 ↾s 𝐵 ) ∈ Ring ) ∧ ( 𝐵 ⊆ 𝐵 ∧ ( 1r ‘ 𝑅 ) ∈ 𝐵 ) ) ) |
| 10 | 2 4 8 9 | syl21anbrc | ⊢ ( 𝑅 ∈ Ring → 𝐵 ∈ ( SubRing ‘ 𝑅 ) ) |