Description: Every ring is a subring of itself. (Contributed by Stefan O'Rear, 30-Nov-2014)
Ref | Expression | ||
---|---|---|---|
Hypothesis | subrgss.1 | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
Assertion | subrgid | ⊢ ( 𝑅 ∈ Ring → 𝐵 ∈ ( SubRing ‘ 𝑅 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subrgss.1 | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
2 | id | ⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Ring ) | |
3 | 1 | ressid | ⊢ ( 𝑅 ∈ Ring → ( 𝑅 ↾s 𝐵 ) = 𝑅 ) |
4 | 3 2 | eqeltrd | ⊢ ( 𝑅 ∈ Ring → ( 𝑅 ↾s 𝐵 ) ∈ Ring ) |
5 | eqid | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) | |
6 | 1 5 | ringidcl | ⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ 𝐵 ) |
7 | ssid | ⊢ 𝐵 ⊆ 𝐵 | |
8 | 6 7 | jctil | ⊢ ( 𝑅 ∈ Ring → ( 𝐵 ⊆ 𝐵 ∧ ( 1r ‘ 𝑅 ) ∈ 𝐵 ) ) |
9 | 1 5 | issubrg | ⊢ ( 𝐵 ∈ ( SubRing ‘ 𝑅 ) ↔ ( ( 𝑅 ∈ Ring ∧ ( 𝑅 ↾s 𝐵 ) ∈ Ring ) ∧ ( 𝐵 ⊆ 𝐵 ∧ ( 1r ‘ 𝑅 ) ∈ 𝐵 ) ) ) |
10 | 2 4 8 9 | syl21anbrc | ⊢ ( 𝑅 ∈ Ring → 𝐵 ∈ ( SubRing ‘ 𝑅 ) ) |