Metamath Proof Explorer


Theorem subrgid

Description: Every ring is a subring of itself. (Contributed by Stefan O'Rear, 30-Nov-2014)

Ref Expression
Hypothesis subrgss.1 𝐵 = ( Base ‘ 𝑅 )
Assertion subrgid ( 𝑅 ∈ Ring → 𝐵 ∈ ( SubRing ‘ 𝑅 ) )

Proof

Step Hyp Ref Expression
1 subrgss.1 𝐵 = ( Base ‘ 𝑅 )
2 id ( 𝑅 ∈ Ring → 𝑅 ∈ Ring )
3 1 ressid ( 𝑅 ∈ Ring → ( 𝑅s 𝐵 ) = 𝑅 )
4 3 2 eqeltrd ( 𝑅 ∈ Ring → ( 𝑅s 𝐵 ) ∈ Ring )
5 eqid ( 1r𝑅 ) = ( 1r𝑅 )
6 1 5 ringidcl ( 𝑅 ∈ Ring → ( 1r𝑅 ) ∈ 𝐵 )
7 ssid 𝐵𝐵
8 6 7 jctil ( 𝑅 ∈ Ring → ( 𝐵𝐵 ∧ ( 1r𝑅 ) ∈ 𝐵 ) )
9 1 5 issubrg ( 𝐵 ∈ ( SubRing ‘ 𝑅 ) ↔ ( ( 𝑅 ∈ Ring ∧ ( 𝑅s 𝐵 ) ∈ Ring ) ∧ ( 𝐵𝐵 ∧ ( 1r𝑅 ) ∈ 𝐵 ) ) )
10 2 4 8 9 syl21anbrc ( 𝑅 ∈ Ring → 𝐵 ∈ ( SubRing ‘ 𝑅 ) )