| Step | Hyp | Ref | Expression | 
						
							| 1 |  | subrgsubg | ⊢ ( 𝑟  ∈  ( SubRing ‘ 𝑅 )  →  𝑟  ∈  ( SubGrp ‘ 𝑅 ) ) | 
						
							| 2 | 1 | ssriv | ⊢ ( SubRing ‘ 𝑅 )  ⊆  ( SubGrp ‘ 𝑅 ) | 
						
							| 3 |  | sstr | ⊢ ( ( 𝑆  ⊆  ( SubRing ‘ 𝑅 )  ∧  ( SubRing ‘ 𝑅 )  ⊆  ( SubGrp ‘ 𝑅 ) )  →  𝑆  ⊆  ( SubGrp ‘ 𝑅 ) ) | 
						
							| 4 | 2 3 | mpan2 | ⊢ ( 𝑆  ⊆  ( SubRing ‘ 𝑅 )  →  𝑆  ⊆  ( SubGrp ‘ 𝑅 ) ) | 
						
							| 5 |  | subgint | ⊢ ( ( 𝑆  ⊆  ( SubGrp ‘ 𝑅 )  ∧  𝑆  ≠  ∅ )  →  ∩  𝑆  ∈  ( SubGrp ‘ 𝑅 ) ) | 
						
							| 6 | 4 5 | sylan | ⊢ ( ( 𝑆  ⊆  ( SubRing ‘ 𝑅 )  ∧  𝑆  ≠  ∅ )  →  ∩  𝑆  ∈  ( SubGrp ‘ 𝑅 ) ) | 
						
							| 7 |  | ssel2 | ⊢ ( ( 𝑆  ⊆  ( SubRing ‘ 𝑅 )  ∧  𝑟  ∈  𝑆 )  →  𝑟  ∈  ( SubRing ‘ 𝑅 ) ) | 
						
							| 8 | 7 | adantlr | ⊢ ( ( ( 𝑆  ⊆  ( SubRing ‘ 𝑅 )  ∧  𝑆  ≠  ∅ )  ∧  𝑟  ∈  𝑆 )  →  𝑟  ∈  ( SubRing ‘ 𝑅 ) ) | 
						
							| 9 |  | eqid | ⊢ ( 1r ‘ 𝑅 )  =  ( 1r ‘ 𝑅 ) | 
						
							| 10 | 9 | subrg1cl | ⊢ ( 𝑟  ∈  ( SubRing ‘ 𝑅 )  →  ( 1r ‘ 𝑅 )  ∈  𝑟 ) | 
						
							| 11 | 8 10 | syl | ⊢ ( ( ( 𝑆  ⊆  ( SubRing ‘ 𝑅 )  ∧  𝑆  ≠  ∅ )  ∧  𝑟  ∈  𝑆 )  →  ( 1r ‘ 𝑅 )  ∈  𝑟 ) | 
						
							| 12 | 11 | ralrimiva | ⊢ ( ( 𝑆  ⊆  ( SubRing ‘ 𝑅 )  ∧  𝑆  ≠  ∅ )  →  ∀ 𝑟  ∈  𝑆 ( 1r ‘ 𝑅 )  ∈  𝑟 ) | 
						
							| 13 |  | fvex | ⊢ ( 1r ‘ 𝑅 )  ∈  V | 
						
							| 14 | 13 | elint2 | ⊢ ( ( 1r ‘ 𝑅 )  ∈  ∩  𝑆  ↔  ∀ 𝑟  ∈  𝑆 ( 1r ‘ 𝑅 )  ∈  𝑟 ) | 
						
							| 15 | 12 14 | sylibr | ⊢ ( ( 𝑆  ⊆  ( SubRing ‘ 𝑅 )  ∧  𝑆  ≠  ∅ )  →  ( 1r ‘ 𝑅 )  ∈  ∩  𝑆 ) | 
						
							| 16 | 8 | adantlr | ⊢ ( ( ( ( 𝑆  ⊆  ( SubRing ‘ 𝑅 )  ∧  𝑆  ≠  ∅ )  ∧  ( 𝑥  ∈  ∩  𝑆  ∧  𝑦  ∈  ∩  𝑆 ) )  ∧  𝑟  ∈  𝑆 )  →  𝑟  ∈  ( SubRing ‘ 𝑅 ) ) | 
						
							| 17 |  | simprl | ⊢ ( ( ( 𝑆  ⊆  ( SubRing ‘ 𝑅 )  ∧  𝑆  ≠  ∅ )  ∧  ( 𝑥  ∈  ∩  𝑆  ∧  𝑦  ∈  ∩  𝑆 ) )  →  𝑥  ∈  ∩  𝑆 ) | 
						
							| 18 |  | elinti | ⊢ ( 𝑥  ∈  ∩  𝑆  →  ( 𝑟  ∈  𝑆  →  𝑥  ∈  𝑟 ) ) | 
						
							| 19 | 18 | imp | ⊢ ( ( 𝑥  ∈  ∩  𝑆  ∧  𝑟  ∈  𝑆 )  →  𝑥  ∈  𝑟 ) | 
						
							| 20 | 17 19 | sylan | ⊢ ( ( ( ( 𝑆  ⊆  ( SubRing ‘ 𝑅 )  ∧  𝑆  ≠  ∅ )  ∧  ( 𝑥  ∈  ∩  𝑆  ∧  𝑦  ∈  ∩  𝑆 ) )  ∧  𝑟  ∈  𝑆 )  →  𝑥  ∈  𝑟 ) | 
						
							| 21 |  | simprr | ⊢ ( ( ( 𝑆  ⊆  ( SubRing ‘ 𝑅 )  ∧  𝑆  ≠  ∅ )  ∧  ( 𝑥  ∈  ∩  𝑆  ∧  𝑦  ∈  ∩  𝑆 ) )  →  𝑦  ∈  ∩  𝑆 ) | 
						
							| 22 |  | elinti | ⊢ ( 𝑦  ∈  ∩  𝑆  →  ( 𝑟  ∈  𝑆  →  𝑦  ∈  𝑟 ) ) | 
						
							| 23 | 22 | imp | ⊢ ( ( 𝑦  ∈  ∩  𝑆  ∧  𝑟  ∈  𝑆 )  →  𝑦  ∈  𝑟 ) | 
						
							| 24 | 21 23 | sylan | ⊢ ( ( ( ( 𝑆  ⊆  ( SubRing ‘ 𝑅 )  ∧  𝑆  ≠  ∅ )  ∧  ( 𝑥  ∈  ∩  𝑆  ∧  𝑦  ∈  ∩  𝑆 ) )  ∧  𝑟  ∈  𝑆 )  →  𝑦  ∈  𝑟 ) | 
						
							| 25 |  | eqid | ⊢ ( .r ‘ 𝑅 )  =  ( .r ‘ 𝑅 ) | 
						
							| 26 | 25 | subrgmcl | ⊢ ( ( 𝑟  ∈  ( SubRing ‘ 𝑅 )  ∧  𝑥  ∈  𝑟  ∧  𝑦  ∈  𝑟 )  →  ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 )  ∈  𝑟 ) | 
						
							| 27 | 16 20 24 26 | syl3anc | ⊢ ( ( ( ( 𝑆  ⊆  ( SubRing ‘ 𝑅 )  ∧  𝑆  ≠  ∅ )  ∧  ( 𝑥  ∈  ∩  𝑆  ∧  𝑦  ∈  ∩  𝑆 ) )  ∧  𝑟  ∈  𝑆 )  →  ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 )  ∈  𝑟 ) | 
						
							| 28 | 27 | ralrimiva | ⊢ ( ( ( 𝑆  ⊆  ( SubRing ‘ 𝑅 )  ∧  𝑆  ≠  ∅ )  ∧  ( 𝑥  ∈  ∩  𝑆  ∧  𝑦  ∈  ∩  𝑆 ) )  →  ∀ 𝑟  ∈  𝑆 ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 )  ∈  𝑟 ) | 
						
							| 29 |  | ovex | ⊢ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 )  ∈  V | 
						
							| 30 | 29 | elint2 | ⊢ ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 )  ∈  ∩  𝑆  ↔  ∀ 𝑟  ∈  𝑆 ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 )  ∈  𝑟 ) | 
						
							| 31 | 28 30 | sylibr | ⊢ ( ( ( 𝑆  ⊆  ( SubRing ‘ 𝑅 )  ∧  𝑆  ≠  ∅ )  ∧  ( 𝑥  ∈  ∩  𝑆  ∧  𝑦  ∈  ∩  𝑆 ) )  →  ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 )  ∈  ∩  𝑆 ) | 
						
							| 32 | 31 | ralrimivva | ⊢ ( ( 𝑆  ⊆  ( SubRing ‘ 𝑅 )  ∧  𝑆  ≠  ∅ )  →  ∀ 𝑥  ∈  ∩  𝑆 ∀ 𝑦  ∈  ∩  𝑆 ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 )  ∈  ∩  𝑆 ) | 
						
							| 33 |  | ssn0 | ⊢ ( ( 𝑆  ⊆  ( SubRing ‘ 𝑅 )  ∧  𝑆  ≠  ∅ )  →  ( SubRing ‘ 𝑅 )  ≠  ∅ ) | 
						
							| 34 |  | n0 | ⊢ ( ( SubRing ‘ 𝑅 )  ≠  ∅  ↔  ∃ 𝑟 𝑟  ∈  ( SubRing ‘ 𝑅 ) ) | 
						
							| 35 |  | subrgrcl | ⊢ ( 𝑟  ∈  ( SubRing ‘ 𝑅 )  →  𝑅  ∈  Ring ) | 
						
							| 36 | 35 | exlimiv | ⊢ ( ∃ 𝑟 𝑟  ∈  ( SubRing ‘ 𝑅 )  →  𝑅  ∈  Ring ) | 
						
							| 37 | 34 36 | sylbi | ⊢ ( ( SubRing ‘ 𝑅 )  ≠  ∅  →  𝑅  ∈  Ring ) | 
						
							| 38 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 39 | 38 9 25 | issubrg2 | ⊢ ( 𝑅  ∈  Ring  →  ( ∩  𝑆  ∈  ( SubRing ‘ 𝑅 )  ↔  ( ∩  𝑆  ∈  ( SubGrp ‘ 𝑅 )  ∧  ( 1r ‘ 𝑅 )  ∈  ∩  𝑆  ∧  ∀ 𝑥  ∈  ∩  𝑆 ∀ 𝑦  ∈  ∩  𝑆 ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 )  ∈  ∩  𝑆 ) ) ) | 
						
							| 40 | 33 37 39 | 3syl | ⊢ ( ( 𝑆  ⊆  ( SubRing ‘ 𝑅 )  ∧  𝑆  ≠  ∅ )  →  ( ∩  𝑆  ∈  ( SubRing ‘ 𝑅 )  ↔  ( ∩  𝑆  ∈  ( SubGrp ‘ 𝑅 )  ∧  ( 1r ‘ 𝑅 )  ∈  ∩  𝑆  ∧  ∀ 𝑥  ∈  ∩  𝑆 ∀ 𝑦  ∈  ∩  𝑆 ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 )  ∈  ∩  𝑆 ) ) ) | 
						
							| 41 | 6 15 32 40 | mpbir3and | ⊢ ( ( 𝑆  ⊆  ( SubRing ‘ 𝑅 )  ∧  𝑆  ≠  ∅ )  →  ∩  𝑆  ∈  ( SubRing ‘ 𝑅 ) ) |