Metamath Proof Explorer


Theorem subrginv

Description: A subring always has the same inversion function, for elements that are invertible. (Contributed by Mario Carneiro, 4-Dec-2014)

Ref Expression
Hypotheses subrginv.1 𝑆 = ( 𝑅s 𝐴 )
subrginv.2 𝐼 = ( invr𝑅 )
subrginv.3 𝑈 = ( Unit ‘ 𝑆 )
subrginv.4 𝐽 = ( invr𝑆 )
Assertion subrginv ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋𝑈 ) → ( 𝐼𝑋 ) = ( 𝐽𝑋 ) )

Proof

Step Hyp Ref Expression
1 subrginv.1 𝑆 = ( 𝑅s 𝐴 )
2 subrginv.2 𝐼 = ( invr𝑅 )
3 subrginv.3 𝑈 = ( Unit ‘ 𝑆 )
4 subrginv.4 𝐽 = ( invr𝑆 )
5 subrgrcl ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝑅 ∈ Ring )
6 5 adantr ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋𝑈 ) → 𝑅 ∈ Ring )
7 1 subrgbas ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝐴 = ( Base ‘ 𝑆 ) )
8 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
9 8 subrgss ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝐴 ⊆ ( Base ‘ 𝑅 ) )
10 7 9 eqsstrrd ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( Base ‘ 𝑆 ) ⊆ ( Base ‘ 𝑅 ) )
11 10 adantr ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋𝑈 ) → ( Base ‘ 𝑆 ) ⊆ ( Base ‘ 𝑅 ) )
12 1 subrgring ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝑆 ∈ Ring )
13 eqid ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 )
14 3 4 13 ringinvcl ( ( 𝑆 ∈ Ring ∧ 𝑋𝑈 ) → ( 𝐽𝑋 ) ∈ ( Base ‘ 𝑆 ) )
15 12 14 sylan ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋𝑈 ) → ( 𝐽𝑋 ) ∈ ( Base ‘ 𝑆 ) )
16 11 15 sseldd ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋𝑈 ) → ( 𝐽𝑋 ) ∈ ( Base ‘ 𝑅 ) )
17 13 3 unitcl ( 𝑋𝑈𝑋 ∈ ( Base ‘ 𝑆 ) )
18 17 adantl ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋𝑈 ) → 𝑋 ∈ ( Base ‘ 𝑆 ) )
19 11 18 sseldd ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋𝑈 ) → 𝑋 ∈ ( Base ‘ 𝑅 ) )
20 eqid ( Unit ‘ 𝑅 ) = ( Unit ‘ 𝑅 )
21 1 20 3 subrguss ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝑈 ⊆ ( Unit ‘ 𝑅 ) )
22 21 sselda ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋𝑈 ) → 𝑋 ∈ ( Unit ‘ 𝑅 ) )
23 20 2 8 ringinvcl ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ ( Unit ‘ 𝑅 ) ) → ( 𝐼𝑋 ) ∈ ( Base ‘ 𝑅 ) )
24 5 22 23 syl2an2r ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋𝑈 ) → ( 𝐼𝑋 ) ∈ ( Base ‘ 𝑅 ) )
25 eqid ( .r𝑅 ) = ( .r𝑅 )
26 8 25 ringass ( ( 𝑅 ∈ Ring ∧ ( ( 𝐽𝑋 ) ∈ ( Base ‘ 𝑅 ) ∧ 𝑋 ∈ ( Base ‘ 𝑅 ) ∧ ( 𝐼𝑋 ) ∈ ( Base ‘ 𝑅 ) ) ) → ( ( ( 𝐽𝑋 ) ( .r𝑅 ) 𝑋 ) ( .r𝑅 ) ( 𝐼𝑋 ) ) = ( ( 𝐽𝑋 ) ( .r𝑅 ) ( 𝑋 ( .r𝑅 ) ( 𝐼𝑋 ) ) ) )
27 6 16 19 24 26 syl13anc ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋𝑈 ) → ( ( ( 𝐽𝑋 ) ( .r𝑅 ) 𝑋 ) ( .r𝑅 ) ( 𝐼𝑋 ) ) = ( ( 𝐽𝑋 ) ( .r𝑅 ) ( 𝑋 ( .r𝑅 ) ( 𝐼𝑋 ) ) ) )
28 eqid ( .r𝑆 ) = ( .r𝑆 )
29 eqid ( 1r𝑆 ) = ( 1r𝑆 )
30 3 4 28 29 unitlinv ( ( 𝑆 ∈ Ring ∧ 𝑋𝑈 ) → ( ( 𝐽𝑋 ) ( .r𝑆 ) 𝑋 ) = ( 1r𝑆 ) )
31 12 30 sylan ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋𝑈 ) → ( ( 𝐽𝑋 ) ( .r𝑆 ) 𝑋 ) = ( 1r𝑆 ) )
32 1 25 ressmulr ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( .r𝑅 ) = ( .r𝑆 ) )
33 32 adantr ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋𝑈 ) → ( .r𝑅 ) = ( .r𝑆 ) )
34 33 oveqd ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋𝑈 ) → ( ( 𝐽𝑋 ) ( .r𝑅 ) 𝑋 ) = ( ( 𝐽𝑋 ) ( .r𝑆 ) 𝑋 ) )
35 eqid ( 1r𝑅 ) = ( 1r𝑅 )
36 1 35 subrg1 ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( 1r𝑅 ) = ( 1r𝑆 ) )
37 36 adantr ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋𝑈 ) → ( 1r𝑅 ) = ( 1r𝑆 ) )
38 31 34 37 3eqtr4d ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋𝑈 ) → ( ( 𝐽𝑋 ) ( .r𝑅 ) 𝑋 ) = ( 1r𝑅 ) )
39 38 oveq1d ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋𝑈 ) → ( ( ( 𝐽𝑋 ) ( .r𝑅 ) 𝑋 ) ( .r𝑅 ) ( 𝐼𝑋 ) ) = ( ( 1r𝑅 ) ( .r𝑅 ) ( 𝐼𝑋 ) ) )
40 20 2 25 35 unitrinv ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ ( Unit ‘ 𝑅 ) ) → ( 𝑋 ( .r𝑅 ) ( 𝐼𝑋 ) ) = ( 1r𝑅 ) )
41 5 22 40 syl2an2r ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋𝑈 ) → ( 𝑋 ( .r𝑅 ) ( 𝐼𝑋 ) ) = ( 1r𝑅 ) )
42 41 oveq2d ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋𝑈 ) → ( ( 𝐽𝑋 ) ( .r𝑅 ) ( 𝑋 ( .r𝑅 ) ( 𝐼𝑋 ) ) ) = ( ( 𝐽𝑋 ) ( .r𝑅 ) ( 1r𝑅 ) ) )
43 27 39 42 3eqtr3d ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋𝑈 ) → ( ( 1r𝑅 ) ( .r𝑅 ) ( 𝐼𝑋 ) ) = ( ( 𝐽𝑋 ) ( .r𝑅 ) ( 1r𝑅 ) ) )
44 8 25 35 ringlidm ( ( 𝑅 ∈ Ring ∧ ( 𝐼𝑋 ) ∈ ( Base ‘ 𝑅 ) ) → ( ( 1r𝑅 ) ( .r𝑅 ) ( 𝐼𝑋 ) ) = ( 𝐼𝑋 ) )
45 5 24 44 syl2an2r ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋𝑈 ) → ( ( 1r𝑅 ) ( .r𝑅 ) ( 𝐼𝑋 ) ) = ( 𝐼𝑋 ) )
46 8 25 35 ringridm ( ( 𝑅 ∈ Ring ∧ ( 𝐽𝑋 ) ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝐽𝑋 ) ( .r𝑅 ) ( 1r𝑅 ) ) = ( 𝐽𝑋 ) )
47 5 16 46 syl2an2r ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋𝑈 ) → ( ( 𝐽𝑋 ) ( .r𝑅 ) ( 1r𝑅 ) ) = ( 𝐽𝑋 ) )
48 43 45 47 3eqtr3d ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋𝑈 ) → ( 𝐼𝑋 ) = ( 𝐽𝑋 ) )