| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subrginv.1 |
⊢ 𝑆 = ( 𝑅 ↾s 𝐴 ) |
| 2 |
|
subrginv.2 |
⊢ 𝐼 = ( invr ‘ 𝑅 ) |
| 3 |
|
subrginv.3 |
⊢ 𝑈 = ( Unit ‘ 𝑆 ) |
| 4 |
|
subrginv.4 |
⊢ 𝐽 = ( invr ‘ 𝑆 ) |
| 5 |
|
subrgrcl |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝑅 ∈ Ring ) |
| 6 |
5
|
adantr |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝑈 ) → 𝑅 ∈ Ring ) |
| 7 |
1
|
subrgbas |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝐴 = ( Base ‘ 𝑆 ) ) |
| 8 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 9 |
8
|
subrgss |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝐴 ⊆ ( Base ‘ 𝑅 ) ) |
| 10 |
7 9
|
eqsstrrd |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( Base ‘ 𝑆 ) ⊆ ( Base ‘ 𝑅 ) ) |
| 11 |
10
|
adantr |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝑈 ) → ( Base ‘ 𝑆 ) ⊆ ( Base ‘ 𝑅 ) ) |
| 12 |
1
|
subrgring |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝑆 ∈ Ring ) |
| 13 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
| 14 |
3 4 13
|
ringinvcl |
⊢ ( ( 𝑆 ∈ Ring ∧ 𝑋 ∈ 𝑈 ) → ( 𝐽 ‘ 𝑋 ) ∈ ( Base ‘ 𝑆 ) ) |
| 15 |
12 14
|
sylan |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝑈 ) → ( 𝐽 ‘ 𝑋 ) ∈ ( Base ‘ 𝑆 ) ) |
| 16 |
11 15
|
sseldd |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝑈 ) → ( 𝐽 ‘ 𝑋 ) ∈ ( Base ‘ 𝑅 ) ) |
| 17 |
13 3
|
unitcl |
⊢ ( 𝑋 ∈ 𝑈 → 𝑋 ∈ ( Base ‘ 𝑆 ) ) |
| 18 |
17
|
adantl |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝑈 ) → 𝑋 ∈ ( Base ‘ 𝑆 ) ) |
| 19 |
11 18
|
sseldd |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝑈 ) → 𝑋 ∈ ( Base ‘ 𝑅 ) ) |
| 20 |
|
eqid |
⊢ ( Unit ‘ 𝑅 ) = ( Unit ‘ 𝑅 ) |
| 21 |
1 20 3
|
subrguss |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝑈 ⊆ ( Unit ‘ 𝑅 ) ) |
| 22 |
21
|
sselda |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝑈 ) → 𝑋 ∈ ( Unit ‘ 𝑅 ) ) |
| 23 |
20 2 8
|
ringinvcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ ( Unit ‘ 𝑅 ) ) → ( 𝐼 ‘ 𝑋 ) ∈ ( Base ‘ 𝑅 ) ) |
| 24 |
5 22 23
|
syl2an2r |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝑈 ) → ( 𝐼 ‘ 𝑋 ) ∈ ( Base ‘ 𝑅 ) ) |
| 25 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
| 26 |
8 25
|
ringass |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ( 𝐽 ‘ 𝑋 ) ∈ ( Base ‘ 𝑅 ) ∧ 𝑋 ∈ ( Base ‘ 𝑅 ) ∧ ( 𝐼 ‘ 𝑋 ) ∈ ( Base ‘ 𝑅 ) ) ) → ( ( ( 𝐽 ‘ 𝑋 ) ( .r ‘ 𝑅 ) 𝑋 ) ( .r ‘ 𝑅 ) ( 𝐼 ‘ 𝑋 ) ) = ( ( 𝐽 ‘ 𝑋 ) ( .r ‘ 𝑅 ) ( 𝑋 ( .r ‘ 𝑅 ) ( 𝐼 ‘ 𝑋 ) ) ) ) |
| 27 |
6 16 19 24 26
|
syl13anc |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝑈 ) → ( ( ( 𝐽 ‘ 𝑋 ) ( .r ‘ 𝑅 ) 𝑋 ) ( .r ‘ 𝑅 ) ( 𝐼 ‘ 𝑋 ) ) = ( ( 𝐽 ‘ 𝑋 ) ( .r ‘ 𝑅 ) ( 𝑋 ( .r ‘ 𝑅 ) ( 𝐼 ‘ 𝑋 ) ) ) ) |
| 28 |
|
eqid |
⊢ ( .r ‘ 𝑆 ) = ( .r ‘ 𝑆 ) |
| 29 |
|
eqid |
⊢ ( 1r ‘ 𝑆 ) = ( 1r ‘ 𝑆 ) |
| 30 |
3 4 28 29
|
unitlinv |
⊢ ( ( 𝑆 ∈ Ring ∧ 𝑋 ∈ 𝑈 ) → ( ( 𝐽 ‘ 𝑋 ) ( .r ‘ 𝑆 ) 𝑋 ) = ( 1r ‘ 𝑆 ) ) |
| 31 |
12 30
|
sylan |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝑈 ) → ( ( 𝐽 ‘ 𝑋 ) ( .r ‘ 𝑆 ) 𝑋 ) = ( 1r ‘ 𝑆 ) ) |
| 32 |
1 25
|
ressmulr |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( .r ‘ 𝑅 ) = ( .r ‘ 𝑆 ) ) |
| 33 |
32
|
adantr |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝑈 ) → ( .r ‘ 𝑅 ) = ( .r ‘ 𝑆 ) ) |
| 34 |
33
|
oveqd |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝑈 ) → ( ( 𝐽 ‘ 𝑋 ) ( .r ‘ 𝑅 ) 𝑋 ) = ( ( 𝐽 ‘ 𝑋 ) ( .r ‘ 𝑆 ) 𝑋 ) ) |
| 35 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
| 36 |
1 35
|
subrg1 |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑆 ) ) |
| 37 |
36
|
adantr |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝑈 ) → ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑆 ) ) |
| 38 |
31 34 37
|
3eqtr4d |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝑈 ) → ( ( 𝐽 ‘ 𝑋 ) ( .r ‘ 𝑅 ) 𝑋 ) = ( 1r ‘ 𝑅 ) ) |
| 39 |
38
|
oveq1d |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝑈 ) → ( ( ( 𝐽 ‘ 𝑋 ) ( .r ‘ 𝑅 ) 𝑋 ) ( .r ‘ 𝑅 ) ( 𝐼 ‘ 𝑋 ) ) = ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) ( 𝐼 ‘ 𝑋 ) ) ) |
| 40 |
20 2 25 35
|
unitrinv |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ ( Unit ‘ 𝑅 ) ) → ( 𝑋 ( .r ‘ 𝑅 ) ( 𝐼 ‘ 𝑋 ) ) = ( 1r ‘ 𝑅 ) ) |
| 41 |
5 22 40
|
syl2an2r |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝑈 ) → ( 𝑋 ( .r ‘ 𝑅 ) ( 𝐼 ‘ 𝑋 ) ) = ( 1r ‘ 𝑅 ) ) |
| 42 |
41
|
oveq2d |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝑈 ) → ( ( 𝐽 ‘ 𝑋 ) ( .r ‘ 𝑅 ) ( 𝑋 ( .r ‘ 𝑅 ) ( 𝐼 ‘ 𝑋 ) ) ) = ( ( 𝐽 ‘ 𝑋 ) ( .r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) |
| 43 |
27 39 42
|
3eqtr3d |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝑈 ) → ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) ( 𝐼 ‘ 𝑋 ) ) = ( ( 𝐽 ‘ 𝑋 ) ( .r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) |
| 44 |
8 25 35
|
ringlidm |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐼 ‘ 𝑋 ) ∈ ( Base ‘ 𝑅 ) ) → ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ 𝑋 ) ) |
| 45 |
5 24 44
|
syl2an2r |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝑈 ) → ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ 𝑋 ) ) |
| 46 |
8 25 35
|
ringridm |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐽 ‘ 𝑋 ) ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝐽 ‘ 𝑋 ) ( .r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) = ( 𝐽 ‘ 𝑋 ) ) |
| 47 |
5 16 46
|
syl2an2r |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝑈 ) → ( ( 𝐽 ‘ 𝑋 ) ( .r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) = ( 𝐽 ‘ 𝑋 ) ) |
| 48 |
43 45 47
|
3eqtr3d |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝑈 ) → ( 𝐼 ‘ 𝑋 ) = ( 𝐽 ‘ 𝑋 ) ) |