Step |
Hyp |
Ref |
Expression |
1 |
|
subrgmcl.p |
⊢ · = ( .r ‘ 𝑅 ) |
2 |
|
eqid |
⊢ ( 𝑅 ↾s 𝐴 ) = ( 𝑅 ↾s 𝐴 ) |
3 |
2
|
subrgring |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( 𝑅 ↾s 𝐴 ) ∈ Ring ) |
4 |
3
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) → ( 𝑅 ↾s 𝐴 ) ∈ Ring ) |
5 |
|
simp2 |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) → 𝑋 ∈ 𝐴 ) |
6 |
2
|
subrgbas |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝐴 = ( Base ‘ ( 𝑅 ↾s 𝐴 ) ) ) |
7 |
6
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) → 𝐴 = ( Base ‘ ( 𝑅 ↾s 𝐴 ) ) ) |
8 |
5 7
|
eleqtrd |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) → 𝑋 ∈ ( Base ‘ ( 𝑅 ↾s 𝐴 ) ) ) |
9 |
|
simp3 |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) → 𝑌 ∈ 𝐴 ) |
10 |
9 7
|
eleqtrd |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) → 𝑌 ∈ ( Base ‘ ( 𝑅 ↾s 𝐴 ) ) ) |
11 |
|
eqid |
⊢ ( Base ‘ ( 𝑅 ↾s 𝐴 ) ) = ( Base ‘ ( 𝑅 ↾s 𝐴 ) ) |
12 |
|
eqid |
⊢ ( .r ‘ ( 𝑅 ↾s 𝐴 ) ) = ( .r ‘ ( 𝑅 ↾s 𝐴 ) ) |
13 |
11 12
|
ringcl |
⊢ ( ( ( 𝑅 ↾s 𝐴 ) ∈ Ring ∧ 𝑋 ∈ ( Base ‘ ( 𝑅 ↾s 𝐴 ) ) ∧ 𝑌 ∈ ( Base ‘ ( 𝑅 ↾s 𝐴 ) ) ) → ( 𝑋 ( .r ‘ ( 𝑅 ↾s 𝐴 ) ) 𝑌 ) ∈ ( Base ‘ ( 𝑅 ↾s 𝐴 ) ) ) |
14 |
4 8 10 13
|
syl3anc |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) → ( 𝑋 ( .r ‘ ( 𝑅 ↾s 𝐴 ) ) 𝑌 ) ∈ ( Base ‘ ( 𝑅 ↾s 𝐴 ) ) ) |
15 |
2 1
|
ressmulr |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → · = ( .r ‘ ( 𝑅 ↾s 𝐴 ) ) ) |
16 |
15
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) → · = ( .r ‘ ( 𝑅 ↾s 𝐴 ) ) ) |
17 |
16
|
oveqd |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) → ( 𝑋 · 𝑌 ) = ( 𝑋 ( .r ‘ ( 𝑅 ↾s 𝐴 ) ) 𝑌 ) ) |
18 |
14 17 7
|
3eltr4d |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) → ( 𝑋 · 𝑌 ) ∈ 𝐴 ) |