| Step | Hyp | Ref | Expression | 
						
							| 1 |  | subrgmpl.s | ⊢ 𝑆  =  ( 𝐼  mPoly  𝑅 ) | 
						
							| 2 |  | subrgmpl.h | ⊢ 𝐻  =  ( 𝑅  ↾s  𝑇 ) | 
						
							| 3 |  | subrgmpl.u | ⊢ 𝑈  =  ( 𝐼  mPoly  𝐻 ) | 
						
							| 4 |  | subrgmpl.b | ⊢ 𝐵  =  ( Base ‘ 𝑈 ) | 
						
							| 5 |  | simpl | ⊢ ( ( 𝐼  ∈  𝑉  ∧  𝑇  ∈  ( SubRing ‘ 𝑅 ) )  →  𝐼  ∈  𝑉 ) | 
						
							| 6 |  | simpr | ⊢ ( ( 𝐼  ∈  𝑉  ∧  𝑇  ∈  ( SubRing ‘ 𝑅 ) )  →  𝑇  ∈  ( SubRing ‘ 𝑅 ) ) | 
						
							| 7 |  | eqid | ⊢ ( 𝐼  mPwSer  𝐻 )  =  ( 𝐼  mPwSer  𝐻 ) | 
						
							| 8 |  | eqid | ⊢ ( Base ‘ ( 𝐼  mPwSer  𝐻 ) )  =  ( Base ‘ ( 𝐼  mPwSer  𝐻 ) ) | 
						
							| 9 |  | eqid | ⊢ ( Base ‘ 𝑆 )  =  ( Base ‘ 𝑆 ) | 
						
							| 10 | 1 2 3 4 5 6 7 8 9 | ressmplbas2 | ⊢ ( ( 𝐼  ∈  𝑉  ∧  𝑇  ∈  ( SubRing ‘ 𝑅 ) )  →  𝐵  =  ( ( Base ‘ ( 𝐼  mPwSer  𝐻 ) )  ∩  ( Base ‘ 𝑆 ) ) ) | 
						
							| 11 |  | eqid | ⊢ ( 𝐼  mPwSer  𝑅 )  =  ( 𝐼  mPwSer  𝑅 ) | 
						
							| 12 | 11 2 7 8 | subrgpsr | ⊢ ( ( 𝐼  ∈  𝑉  ∧  𝑇  ∈  ( SubRing ‘ 𝑅 ) )  →  ( Base ‘ ( 𝐼  mPwSer  𝐻 ) )  ∈  ( SubRing ‘ ( 𝐼  mPwSer  𝑅 ) ) ) | 
						
							| 13 |  | subrgrcl | ⊢ ( 𝑇  ∈  ( SubRing ‘ 𝑅 )  →  𝑅  ∈  Ring ) | 
						
							| 14 | 13 | adantl | ⊢ ( ( 𝐼  ∈  𝑉  ∧  𝑇  ∈  ( SubRing ‘ 𝑅 ) )  →  𝑅  ∈  Ring ) | 
						
							| 15 | 11 1 9 5 14 | mplsubrg | ⊢ ( ( 𝐼  ∈  𝑉  ∧  𝑇  ∈  ( SubRing ‘ 𝑅 ) )  →  ( Base ‘ 𝑆 )  ∈  ( SubRing ‘ ( 𝐼  mPwSer  𝑅 ) ) ) | 
						
							| 16 |  | subrgin | ⊢ ( ( ( Base ‘ ( 𝐼  mPwSer  𝐻 ) )  ∈  ( SubRing ‘ ( 𝐼  mPwSer  𝑅 ) )  ∧  ( Base ‘ 𝑆 )  ∈  ( SubRing ‘ ( 𝐼  mPwSer  𝑅 ) ) )  →  ( ( Base ‘ ( 𝐼  mPwSer  𝐻 ) )  ∩  ( Base ‘ 𝑆 ) )  ∈  ( SubRing ‘ ( 𝐼  mPwSer  𝑅 ) ) ) | 
						
							| 17 | 12 15 16 | syl2anc | ⊢ ( ( 𝐼  ∈  𝑉  ∧  𝑇  ∈  ( SubRing ‘ 𝑅 ) )  →  ( ( Base ‘ ( 𝐼  mPwSer  𝐻 ) )  ∩  ( Base ‘ 𝑆 ) )  ∈  ( SubRing ‘ ( 𝐼  mPwSer  𝑅 ) ) ) | 
						
							| 18 | 10 17 | eqeltrd | ⊢ ( ( 𝐼  ∈  𝑉  ∧  𝑇  ∈  ( SubRing ‘ 𝑅 ) )  →  𝐵  ∈  ( SubRing ‘ ( 𝐼  mPwSer  𝑅 ) ) ) | 
						
							| 19 |  | inss2 | ⊢ ( ( Base ‘ ( 𝐼  mPwSer  𝐻 ) )  ∩  ( Base ‘ 𝑆 ) )  ⊆  ( Base ‘ 𝑆 ) | 
						
							| 20 | 10 19 | eqsstrdi | ⊢ ( ( 𝐼  ∈  𝑉  ∧  𝑇  ∈  ( SubRing ‘ 𝑅 ) )  →  𝐵  ⊆  ( Base ‘ 𝑆 ) ) | 
						
							| 21 | 1 11 9 | mplval2 | ⊢ 𝑆  =  ( ( 𝐼  mPwSer  𝑅 )  ↾s  ( Base ‘ 𝑆 ) ) | 
						
							| 22 | 21 | subsubrg | ⊢ ( ( Base ‘ 𝑆 )  ∈  ( SubRing ‘ ( 𝐼  mPwSer  𝑅 ) )  →  ( 𝐵  ∈  ( SubRing ‘ 𝑆 )  ↔  ( 𝐵  ∈  ( SubRing ‘ ( 𝐼  mPwSer  𝑅 ) )  ∧  𝐵  ⊆  ( Base ‘ 𝑆 ) ) ) ) | 
						
							| 23 | 15 22 | syl | ⊢ ( ( 𝐼  ∈  𝑉  ∧  𝑇  ∈  ( SubRing ‘ 𝑅 ) )  →  ( 𝐵  ∈  ( SubRing ‘ 𝑆 )  ↔  ( 𝐵  ∈  ( SubRing ‘ ( 𝐼  mPwSer  𝑅 ) )  ∧  𝐵  ⊆  ( Base ‘ 𝑆 ) ) ) ) | 
						
							| 24 | 18 20 23 | mpbir2and | ⊢ ( ( 𝐼  ∈  𝑉  ∧  𝑇  ∈  ( SubRing ‘ 𝑅 ) )  →  𝐵  ∈  ( SubRing ‘ 𝑆 ) ) |