| Step | Hyp | Ref | Expression | 
						
							| 1 |  | subrgmre.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 2 | 1 | subrgss | ⊢ ( 𝑎  ∈  ( SubRing ‘ 𝑅 )  →  𝑎  ⊆  𝐵 ) | 
						
							| 3 |  | velpw | ⊢ ( 𝑎  ∈  𝒫  𝐵  ↔  𝑎  ⊆  𝐵 ) | 
						
							| 4 | 2 3 | sylibr | ⊢ ( 𝑎  ∈  ( SubRing ‘ 𝑅 )  →  𝑎  ∈  𝒫  𝐵 ) | 
						
							| 5 | 4 | a1i | ⊢ ( 𝑅  ∈  Ring  →  ( 𝑎  ∈  ( SubRing ‘ 𝑅 )  →  𝑎  ∈  𝒫  𝐵 ) ) | 
						
							| 6 | 5 | ssrdv | ⊢ ( 𝑅  ∈  Ring  →  ( SubRing ‘ 𝑅 )  ⊆  𝒫  𝐵 ) | 
						
							| 7 | 1 | subrgid | ⊢ ( 𝑅  ∈  Ring  →  𝐵  ∈  ( SubRing ‘ 𝑅 ) ) | 
						
							| 8 |  | subrgint | ⊢ ( ( 𝑎  ⊆  ( SubRing ‘ 𝑅 )  ∧  𝑎  ≠  ∅ )  →  ∩  𝑎  ∈  ( SubRing ‘ 𝑅 ) ) | 
						
							| 9 | 8 | 3adant1 | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑎  ⊆  ( SubRing ‘ 𝑅 )  ∧  𝑎  ≠  ∅ )  →  ∩  𝑎  ∈  ( SubRing ‘ 𝑅 ) ) | 
						
							| 10 | 6 7 9 | ismred | ⊢ ( 𝑅  ∈  Ring  →  ( SubRing ‘ 𝑅 )  ∈  ( Moore ‘ 𝐵 ) ) |