Step |
Hyp |
Ref |
Expression |
1 |
|
subrgnrg.h |
⊢ 𝐻 = ( 𝐺 ↾s 𝐴 ) |
2 |
|
nrgngp |
⊢ ( 𝐺 ∈ NrmRing → 𝐺 ∈ NrmGrp ) |
3 |
|
subrgsubg |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝐺 ) → 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ) |
4 |
1
|
subgngp |
⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝐻 ∈ NrmGrp ) |
5 |
2 3 4
|
syl2an |
⊢ ( ( 𝐺 ∈ NrmRing ∧ 𝐴 ∈ ( SubRing ‘ 𝐺 ) ) → 𝐻 ∈ NrmGrp ) |
6 |
3
|
adantl |
⊢ ( ( 𝐺 ∈ NrmRing ∧ 𝐴 ∈ ( SubRing ‘ 𝐺 ) ) → 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ) |
7 |
|
eqid |
⊢ ( norm ‘ 𝐺 ) = ( norm ‘ 𝐺 ) |
8 |
|
eqid |
⊢ ( norm ‘ 𝐻 ) = ( norm ‘ 𝐻 ) |
9 |
1 7 8
|
subgnm |
⊢ ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) → ( norm ‘ 𝐻 ) = ( ( norm ‘ 𝐺 ) ↾ 𝐴 ) ) |
10 |
6 9
|
syl |
⊢ ( ( 𝐺 ∈ NrmRing ∧ 𝐴 ∈ ( SubRing ‘ 𝐺 ) ) → ( norm ‘ 𝐻 ) = ( ( norm ‘ 𝐺 ) ↾ 𝐴 ) ) |
11 |
|
eqid |
⊢ ( AbsVal ‘ 𝐺 ) = ( AbsVal ‘ 𝐺 ) |
12 |
7 11
|
nrgabv |
⊢ ( 𝐺 ∈ NrmRing → ( norm ‘ 𝐺 ) ∈ ( AbsVal ‘ 𝐺 ) ) |
13 |
|
eqid |
⊢ ( AbsVal ‘ 𝐻 ) = ( AbsVal ‘ 𝐻 ) |
14 |
11 1 13
|
abvres |
⊢ ( ( ( norm ‘ 𝐺 ) ∈ ( AbsVal ‘ 𝐺 ) ∧ 𝐴 ∈ ( SubRing ‘ 𝐺 ) ) → ( ( norm ‘ 𝐺 ) ↾ 𝐴 ) ∈ ( AbsVal ‘ 𝐻 ) ) |
15 |
12 14
|
sylan |
⊢ ( ( 𝐺 ∈ NrmRing ∧ 𝐴 ∈ ( SubRing ‘ 𝐺 ) ) → ( ( norm ‘ 𝐺 ) ↾ 𝐴 ) ∈ ( AbsVal ‘ 𝐻 ) ) |
16 |
10 15
|
eqeltrd |
⊢ ( ( 𝐺 ∈ NrmRing ∧ 𝐴 ∈ ( SubRing ‘ 𝐺 ) ) → ( norm ‘ 𝐻 ) ∈ ( AbsVal ‘ 𝐻 ) ) |
17 |
8 13
|
isnrg |
⊢ ( 𝐻 ∈ NrmRing ↔ ( 𝐻 ∈ NrmGrp ∧ ( norm ‘ 𝐻 ) ∈ ( AbsVal ‘ 𝐻 ) ) ) |
18 |
5 16 17
|
sylanbrc |
⊢ ( ( 𝐺 ∈ NrmRing ∧ 𝐴 ∈ ( SubRing ‘ 𝐺 ) ) → 𝐻 ∈ NrmRing ) |