Step |
Hyp |
Ref |
Expression |
1 |
|
subrgnzr.1 |
⊢ 𝑆 = ( 𝑅 ↾s 𝐴 ) |
2 |
1
|
subrgring |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝑆 ∈ Ring ) |
3 |
2
|
adantl |
⊢ ( ( 𝑅 ∈ NzRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) → 𝑆 ∈ Ring ) |
4 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
5 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
6 |
4 5
|
nzrnz |
⊢ ( 𝑅 ∈ NzRing → ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) |
7 |
6
|
adantr |
⊢ ( ( 𝑅 ∈ NzRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) → ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) |
8 |
1 4
|
subrg1 |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑆 ) ) |
9 |
8
|
adantl |
⊢ ( ( 𝑅 ∈ NzRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) → ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑆 ) ) |
10 |
1 5
|
subrg0 |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑆 ) ) |
11 |
10
|
adantl |
⊢ ( ( 𝑅 ∈ NzRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) → ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑆 ) ) |
12 |
7 9 11
|
3netr3d |
⊢ ( ( 𝑅 ∈ NzRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) → ( 1r ‘ 𝑆 ) ≠ ( 0g ‘ 𝑆 ) ) |
13 |
|
eqid |
⊢ ( 1r ‘ 𝑆 ) = ( 1r ‘ 𝑆 ) |
14 |
|
eqid |
⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) |
15 |
13 14
|
isnzr |
⊢ ( 𝑆 ∈ NzRing ↔ ( 𝑆 ∈ Ring ∧ ( 1r ‘ 𝑆 ) ≠ ( 0g ‘ 𝑆 ) ) ) |
16 |
3 12 15
|
sylanbrc |
⊢ ( ( 𝑅 ∈ NzRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) → 𝑆 ∈ NzRing ) |