Metamath Proof Explorer


Theorem subrgnzr

Description: A subring of a nonzero ring is nonzero. (Contributed by Mario Carneiro, 15-Jun-2015)

Ref Expression
Hypothesis subrgnzr.1 𝑆 = ( 𝑅s 𝐴 )
Assertion subrgnzr ( ( 𝑅 ∈ NzRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) → 𝑆 ∈ NzRing )

Proof

Step Hyp Ref Expression
1 subrgnzr.1 𝑆 = ( 𝑅s 𝐴 )
2 1 subrgring ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝑆 ∈ Ring )
3 2 adantl ( ( 𝑅 ∈ NzRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) → 𝑆 ∈ Ring )
4 eqid ( 1r𝑅 ) = ( 1r𝑅 )
5 eqid ( 0g𝑅 ) = ( 0g𝑅 )
6 4 5 nzrnz ( 𝑅 ∈ NzRing → ( 1r𝑅 ) ≠ ( 0g𝑅 ) )
7 6 adantr ( ( 𝑅 ∈ NzRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) → ( 1r𝑅 ) ≠ ( 0g𝑅 ) )
8 1 4 subrg1 ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( 1r𝑅 ) = ( 1r𝑆 ) )
9 8 adantl ( ( 𝑅 ∈ NzRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) → ( 1r𝑅 ) = ( 1r𝑆 ) )
10 1 5 subrg0 ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( 0g𝑅 ) = ( 0g𝑆 ) )
11 10 adantl ( ( 𝑅 ∈ NzRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) → ( 0g𝑅 ) = ( 0g𝑆 ) )
12 7 9 11 3netr3d ( ( 𝑅 ∈ NzRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) → ( 1r𝑆 ) ≠ ( 0g𝑆 ) )
13 eqid ( 1r𝑆 ) = ( 1r𝑆 )
14 eqid ( 0g𝑆 ) = ( 0g𝑆 )
15 13 14 isnzr ( 𝑆 ∈ NzRing ↔ ( 𝑆 ∈ Ring ∧ ( 1r𝑆 ) ≠ ( 0g𝑆 ) ) )
16 3 12 15 sylanbrc ( ( 𝑅 ∈ NzRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) → 𝑆 ∈ NzRing )