Metamath Proof Explorer


Theorem subrgply1

Description: A subring of the base ring induces a subring of polynomials. (Contributed by Mario Carneiro, 3-Jul-2015)

Ref Expression
Hypotheses subrgply1.s 𝑆 = ( Poly1𝑅 )
subrgply1.h 𝐻 = ( 𝑅s 𝑇 )
subrgply1.u 𝑈 = ( Poly1𝐻 )
subrgply1.b 𝐵 = ( Base ‘ 𝑈 )
Assertion subrgply1 ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) → 𝐵 ∈ ( SubRing ‘ 𝑆 ) )

Proof

Step Hyp Ref Expression
1 subrgply1.s 𝑆 = ( Poly1𝑅 )
2 subrgply1.h 𝐻 = ( 𝑅s 𝑇 )
3 subrgply1.u 𝑈 = ( Poly1𝐻 )
4 subrgply1.b 𝐵 = ( Base ‘ 𝑈 )
5 1on 1o ∈ On
6 eqid ( 1o mPoly 𝑅 ) = ( 1o mPoly 𝑅 )
7 eqid ( 1o mPoly 𝐻 ) = ( 1o mPoly 𝐻 )
8 3 4 ply1bas 𝐵 = ( Base ‘ ( 1o mPoly 𝐻 ) )
9 6 2 7 8 subrgmpl ( ( 1o ∈ On ∧ 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) → 𝐵 ∈ ( SubRing ‘ ( 1o mPoly 𝑅 ) ) )
10 5 9 mpan ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) → 𝐵 ∈ ( SubRing ‘ ( 1o mPoly 𝑅 ) ) )
11 eqidd ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) → ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) )
12 eqid ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 )
13 1 12 ply1bas ( Base ‘ 𝑆 ) = ( Base ‘ ( 1o mPoly 𝑅 ) )
14 13 a1i ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) → ( Base ‘ 𝑆 ) = ( Base ‘ ( 1o mPoly 𝑅 ) ) )
15 eqid ( +g𝑆 ) = ( +g𝑆 )
16 1 6 15 ply1plusg ( +g𝑆 ) = ( +g ‘ ( 1o mPoly 𝑅 ) )
17 16 a1i ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) → ( +g𝑆 ) = ( +g ‘ ( 1o mPoly 𝑅 ) ) )
18 17 oveqdr ( ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝑥 ( +g𝑆 ) 𝑦 ) = ( 𝑥 ( +g ‘ ( 1o mPoly 𝑅 ) ) 𝑦 ) )
19 eqid ( .r𝑆 ) = ( .r𝑆 )
20 1 6 19 ply1mulr ( .r𝑆 ) = ( .r ‘ ( 1o mPoly 𝑅 ) )
21 20 a1i ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) → ( .r𝑆 ) = ( .r ‘ ( 1o mPoly 𝑅 ) ) )
22 21 oveqdr ( ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝑥 ( .r𝑆 ) 𝑦 ) = ( 𝑥 ( .r ‘ ( 1o mPoly 𝑅 ) ) 𝑦 ) )
23 11 14 18 22 subrgpropd ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) → ( SubRing ‘ 𝑆 ) = ( SubRing ‘ ( 1o mPoly 𝑅 ) ) )
24 10 23 eleqtrrd ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) → 𝐵 ∈ ( SubRing ‘ 𝑆 ) )