| Step | Hyp | Ref | Expression | 
						
							| 1 |  | subrgpropd.1 | ⊢ ( 𝜑  →  𝐵  =  ( Base ‘ 𝐾 ) ) | 
						
							| 2 |  | subrgpropd.2 | ⊢ ( 𝜑  →  𝐵  =  ( Base ‘ 𝐿 ) ) | 
						
							| 3 |  | subrgpropd.3 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 )  =  ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) | 
						
							| 4 |  | subrgpropd.4 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 )  =  ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) ) | 
						
							| 5 | 1 2 3 4 | ringpropd | ⊢ ( 𝜑  →  ( 𝐾  ∈  Ring  ↔  𝐿  ∈  Ring ) ) | 
						
							| 6 | 1 | ineq2d | ⊢ ( 𝜑  →  ( 𝑠  ∩  𝐵 )  =  ( 𝑠  ∩  ( Base ‘ 𝐾 ) ) ) | 
						
							| 7 |  | eqid | ⊢ ( 𝐾  ↾s  𝑠 )  =  ( 𝐾  ↾s  𝑠 ) | 
						
							| 8 |  | eqid | ⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 ) | 
						
							| 9 | 7 8 | ressbas | ⊢ ( 𝑠  ∈  V  →  ( 𝑠  ∩  ( Base ‘ 𝐾 ) )  =  ( Base ‘ ( 𝐾  ↾s  𝑠 ) ) ) | 
						
							| 10 | 9 | elv | ⊢ ( 𝑠  ∩  ( Base ‘ 𝐾 ) )  =  ( Base ‘ ( 𝐾  ↾s  𝑠 ) ) | 
						
							| 11 | 6 10 | eqtrdi | ⊢ ( 𝜑  →  ( 𝑠  ∩  𝐵 )  =  ( Base ‘ ( 𝐾  ↾s  𝑠 ) ) ) | 
						
							| 12 | 2 | ineq2d | ⊢ ( 𝜑  →  ( 𝑠  ∩  𝐵 )  =  ( 𝑠  ∩  ( Base ‘ 𝐿 ) ) ) | 
						
							| 13 |  | eqid | ⊢ ( 𝐿  ↾s  𝑠 )  =  ( 𝐿  ↾s  𝑠 ) | 
						
							| 14 |  | eqid | ⊢ ( Base ‘ 𝐿 )  =  ( Base ‘ 𝐿 ) | 
						
							| 15 | 13 14 | ressbas | ⊢ ( 𝑠  ∈  V  →  ( 𝑠  ∩  ( Base ‘ 𝐿 ) )  =  ( Base ‘ ( 𝐿  ↾s  𝑠 ) ) ) | 
						
							| 16 | 15 | elv | ⊢ ( 𝑠  ∩  ( Base ‘ 𝐿 ) )  =  ( Base ‘ ( 𝐿  ↾s  𝑠 ) ) | 
						
							| 17 | 12 16 | eqtrdi | ⊢ ( 𝜑  →  ( 𝑠  ∩  𝐵 )  =  ( Base ‘ ( 𝐿  ↾s  𝑠 ) ) ) | 
						
							| 18 |  | elinel2 | ⊢ ( 𝑥  ∈  ( 𝑠  ∩  𝐵 )  →  𝑥  ∈  𝐵 ) | 
						
							| 19 |  | elinel2 | ⊢ ( 𝑦  ∈  ( 𝑠  ∩  𝐵 )  →  𝑦  ∈  𝐵 ) | 
						
							| 20 | 18 19 | anim12i | ⊢ ( ( 𝑥  ∈  ( 𝑠  ∩  𝐵 )  ∧  𝑦  ∈  ( 𝑠  ∩  𝐵 ) )  →  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) ) | 
						
							| 21 |  | eqid | ⊢ ( +g ‘ 𝐾 )  =  ( +g ‘ 𝐾 ) | 
						
							| 22 | 7 21 | ressplusg | ⊢ ( 𝑠  ∈  V  →  ( +g ‘ 𝐾 )  =  ( +g ‘ ( 𝐾  ↾s  𝑠 ) ) ) | 
						
							| 23 | 22 | elv | ⊢ ( +g ‘ 𝐾 )  =  ( +g ‘ ( 𝐾  ↾s  𝑠 ) ) | 
						
							| 24 | 23 | oveqi | ⊢ ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 )  =  ( 𝑥 ( +g ‘ ( 𝐾  ↾s  𝑠 ) ) 𝑦 ) | 
						
							| 25 |  | eqid | ⊢ ( +g ‘ 𝐿 )  =  ( +g ‘ 𝐿 ) | 
						
							| 26 | 13 25 | ressplusg | ⊢ ( 𝑠  ∈  V  →  ( +g ‘ 𝐿 )  =  ( +g ‘ ( 𝐿  ↾s  𝑠 ) ) ) | 
						
							| 27 | 26 | elv | ⊢ ( +g ‘ 𝐿 )  =  ( +g ‘ ( 𝐿  ↾s  𝑠 ) ) | 
						
							| 28 | 27 | oveqi | ⊢ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 )  =  ( 𝑥 ( +g ‘ ( 𝐿  ↾s  𝑠 ) ) 𝑦 ) | 
						
							| 29 | 3 24 28 | 3eqtr3g | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑥 ( +g ‘ ( 𝐾  ↾s  𝑠 ) ) 𝑦 )  =  ( 𝑥 ( +g ‘ ( 𝐿  ↾s  𝑠 ) ) 𝑦 ) ) | 
						
							| 30 | 20 29 | sylan2 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( 𝑠  ∩  𝐵 )  ∧  𝑦  ∈  ( 𝑠  ∩  𝐵 ) ) )  →  ( 𝑥 ( +g ‘ ( 𝐾  ↾s  𝑠 ) ) 𝑦 )  =  ( 𝑥 ( +g ‘ ( 𝐿  ↾s  𝑠 ) ) 𝑦 ) ) | 
						
							| 31 |  | eqid | ⊢ ( .r ‘ 𝐾 )  =  ( .r ‘ 𝐾 ) | 
						
							| 32 | 7 31 | ressmulr | ⊢ ( 𝑠  ∈  V  →  ( .r ‘ 𝐾 )  =  ( .r ‘ ( 𝐾  ↾s  𝑠 ) ) ) | 
						
							| 33 | 32 | elv | ⊢ ( .r ‘ 𝐾 )  =  ( .r ‘ ( 𝐾  ↾s  𝑠 ) ) | 
						
							| 34 | 33 | oveqi | ⊢ ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 )  =  ( 𝑥 ( .r ‘ ( 𝐾  ↾s  𝑠 ) ) 𝑦 ) | 
						
							| 35 |  | eqid | ⊢ ( .r ‘ 𝐿 )  =  ( .r ‘ 𝐿 ) | 
						
							| 36 | 13 35 | ressmulr | ⊢ ( 𝑠  ∈  V  →  ( .r ‘ 𝐿 )  =  ( .r ‘ ( 𝐿  ↾s  𝑠 ) ) ) | 
						
							| 37 | 36 | elv | ⊢ ( .r ‘ 𝐿 )  =  ( .r ‘ ( 𝐿  ↾s  𝑠 ) ) | 
						
							| 38 | 37 | oveqi | ⊢ ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 )  =  ( 𝑥 ( .r ‘ ( 𝐿  ↾s  𝑠 ) ) 𝑦 ) | 
						
							| 39 | 4 34 38 | 3eqtr3g | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑥 ( .r ‘ ( 𝐾  ↾s  𝑠 ) ) 𝑦 )  =  ( 𝑥 ( .r ‘ ( 𝐿  ↾s  𝑠 ) ) 𝑦 ) ) | 
						
							| 40 | 20 39 | sylan2 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( 𝑠  ∩  𝐵 )  ∧  𝑦  ∈  ( 𝑠  ∩  𝐵 ) ) )  →  ( 𝑥 ( .r ‘ ( 𝐾  ↾s  𝑠 ) ) 𝑦 )  =  ( 𝑥 ( .r ‘ ( 𝐿  ↾s  𝑠 ) ) 𝑦 ) ) | 
						
							| 41 | 11 17 30 40 | ringpropd | ⊢ ( 𝜑  →  ( ( 𝐾  ↾s  𝑠 )  ∈  Ring  ↔  ( 𝐿  ↾s  𝑠 )  ∈  Ring ) ) | 
						
							| 42 | 5 41 | anbi12d | ⊢ ( 𝜑  →  ( ( 𝐾  ∈  Ring  ∧  ( 𝐾  ↾s  𝑠 )  ∈  Ring )  ↔  ( 𝐿  ∈  Ring  ∧  ( 𝐿  ↾s  𝑠 )  ∈  Ring ) ) ) | 
						
							| 43 | 1 2 | eqtr3d | ⊢ ( 𝜑  →  ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐿 ) ) | 
						
							| 44 | 43 | sseq2d | ⊢ ( 𝜑  →  ( 𝑠  ⊆  ( Base ‘ 𝐾 )  ↔  𝑠  ⊆  ( Base ‘ 𝐿 ) ) ) | 
						
							| 45 | 1 2 4 | rngidpropd | ⊢ ( 𝜑  →  ( 1r ‘ 𝐾 )  =  ( 1r ‘ 𝐿 ) ) | 
						
							| 46 | 45 | eleq1d | ⊢ ( 𝜑  →  ( ( 1r ‘ 𝐾 )  ∈  𝑠  ↔  ( 1r ‘ 𝐿 )  ∈  𝑠 ) ) | 
						
							| 47 | 44 46 | anbi12d | ⊢ ( 𝜑  →  ( ( 𝑠  ⊆  ( Base ‘ 𝐾 )  ∧  ( 1r ‘ 𝐾 )  ∈  𝑠 )  ↔  ( 𝑠  ⊆  ( Base ‘ 𝐿 )  ∧  ( 1r ‘ 𝐿 )  ∈  𝑠 ) ) ) | 
						
							| 48 | 42 47 | anbi12d | ⊢ ( 𝜑  →  ( ( ( 𝐾  ∈  Ring  ∧  ( 𝐾  ↾s  𝑠 )  ∈  Ring )  ∧  ( 𝑠  ⊆  ( Base ‘ 𝐾 )  ∧  ( 1r ‘ 𝐾 )  ∈  𝑠 ) )  ↔  ( ( 𝐿  ∈  Ring  ∧  ( 𝐿  ↾s  𝑠 )  ∈  Ring )  ∧  ( 𝑠  ⊆  ( Base ‘ 𝐿 )  ∧  ( 1r ‘ 𝐿 )  ∈  𝑠 ) ) ) ) | 
						
							| 49 |  | eqid | ⊢ ( 1r ‘ 𝐾 )  =  ( 1r ‘ 𝐾 ) | 
						
							| 50 | 8 49 | issubrg | ⊢ ( 𝑠  ∈  ( SubRing ‘ 𝐾 )  ↔  ( ( 𝐾  ∈  Ring  ∧  ( 𝐾  ↾s  𝑠 )  ∈  Ring )  ∧  ( 𝑠  ⊆  ( Base ‘ 𝐾 )  ∧  ( 1r ‘ 𝐾 )  ∈  𝑠 ) ) ) | 
						
							| 51 |  | eqid | ⊢ ( 1r ‘ 𝐿 )  =  ( 1r ‘ 𝐿 ) | 
						
							| 52 | 14 51 | issubrg | ⊢ ( 𝑠  ∈  ( SubRing ‘ 𝐿 )  ↔  ( ( 𝐿  ∈  Ring  ∧  ( 𝐿  ↾s  𝑠 )  ∈  Ring )  ∧  ( 𝑠  ⊆  ( Base ‘ 𝐿 )  ∧  ( 1r ‘ 𝐿 )  ∈  𝑠 ) ) ) | 
						
							| 53 | 48 50 52 | 3bitr4g | ⊢ ( 𝜑  →  ( 𝑠  ∈  ( SubRing ‘ 𝐾 )  ↔  𝑠  ∈  ( SubRing ‘ 𝐿 ) ) ) | 
						
							| 54 | 53 | eqrdv | ⊢ ( 𝜑  →  ( SubRing ‘ 𝐾 )  =  ( SubRing ‘ 𝐿 ) ) |