Metamath Proof Explorer


Theorem subrgrcl

Description: Reverse closure for a subring predicate. (Contributed by Mario Carneiro, 3-Dec-2014)

Ref Expression
Assertion subrgrcl ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝑅 ∈ Ring )

Proof

Step Hyp Ref Expression
1 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
2 eqid ( 1r𝑅 ) = ( 1r𝑅 )
3 1 2 issubrg ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ↔ ( ( 𝑅 ∈ Ring ∧ ( 𝑅s 𝐴 ) ∈ Ring ) ∧ ( 𝐴 ⊆ ( Base ‘ 𝑅 ) ∧ ( 1r𝑅 ) ∈ 𝐴 ) ) )
4 3 simplbi ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( 𝑅 ∈ Ring ∧ ( 𝑅s 𝐴 ) ∈ Ring ) )
5 4 simpld ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝑅 ∈ Ring )