Metamath Proof Explorer


Theorem subrgring

Description: A subring is a ring. (Contributed by Stefan O'Rear, 27-Nov-2014)

Ref Expression
Hypothesis subrgring.1 𝑆 = ( 𝑅s 𝐴 )
Assertion subrgring ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝑆 ∈ Ring )

Proof

Step Hyp Ref Expression
1 subrgring.1 𝑆 = ( 𝑅s 𝐴 )
2 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
3 eqid ( 1r𝑅 ) = ( 1r𝑅 )
4 2 3 issubrg ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ↔ ( ( 𝑅 ∈ Ring ∧ ( 𝑅s 𝐴 ) ∈ Ring ) ∧ ( 𝐴 ⊆ ( Base ‘ 𝑅 ) ∧ ( 1r𝑅 ) ∈ 𝐴 ) ) )
5 4 simplbi ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( 𝑅 ∈ Ring ∧ ( 𝑅s 𝐴 ) ∈ Ring ) )
6 5 simprd ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( 𝑅s 𝐴 ) ∈ Ring )
7 1 6 eqeltrid ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝑆 ∈ Ring )