Description: A subring is a ring. (Contributed by Stefan O'Rear, 27-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | subrgring.1 | ⊢ 𝑆 = ( 𝑅 ↾s 𝐴 ) | |
| Assertion | subrgring | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝑆 ∈ Ring ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrgring.1 | ⊢ 𝑆 = ( 𝑅 ↾s 𝐴 ) | |
| 2 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 3 | eqid | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) | |
| 4 | 2 3 | issubrg | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ↔ ( ( 𝑅 ∈ Ring ∧ ( 𝑅 ↾s 𝐴 ) ∈ Ring ) ∧ ( 𝐴 ⊆ ( Base ‘ 𝑅 ) ∧ ( 1r ‘ 𝑅 ) ∈ 𝐴 ) ) ) |
| 5 | 4 | simplbi | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( 𝑅 ∈ Ring ∧ ( 𝑅 ↾s 𝐴 ) ∈ Ring ) ) |
| 6 | 5 | simprd | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( 𝑅 ↾s 𝐴 ) ∈ Ring ) |
| 7 | 1 6 | eqeltrid | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝑆 ∈ Ring ) |