Metamath Proof Explorer


Theorem subrgss

Description: A subring is a subset. (Contributed by Stefan O'Rear, 27-Nov-2014)

Ref Expression
Hypothesis subrgss.1 𝐵 = ( Base ‘ 𝑅 )
Assertion subrgss ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝐴𝐵 )

Proof

Step Hyp Ref Expression
1 subrgss.1 𝐵 = ( Base ‘ 𝑅 )
2 eqid ( 1r𝑅 ) = ( 1r𝑅 )
3 1 2 issubrg ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ↔ ( ( 𝑅 ∈ Ring ∧ ( 𝑅s 𝐴 ) ∈ Ring ) ∧ ( 𝐴𝐵 ∧ ( 1r𝑅 ) ∈ 𝐴 ) ) )
4 3 simprbi ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( 𝐴𝐵 ∧ ( 1r𝑅 ) ∈ 𝐴 ) )
5 4 simpld ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝐴𝐵 )