Description: A subring is a subset. (Contributed by Stefan O'Rear, 27-Nov-2014)
Ref | Expression | ||
---|---|---|---|
Hypothesis | subrgss.1 | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
Assertion | subrgss | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝐴 ⊆ 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subrgss.1 | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
2 | eqid | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) | |
3 | 1 2 | issubrg | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ↔ ( ( 𝑅 ∈ Ring ∧ ( 𝑅 ↾s 𝐴 ) ∈ Ring ) ∧ ( 𝐴 ⊆ 𝐵 ∧ ( 1r ‘ 𝑅 ) ∈ 𝐴 ) ) ) |
4 | 3 | simprbi | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( 𝐴 ⊆ 𝐵 ∧ ( 1r ‘ 𝑅 ) ∈ 𝐴 ) ) |
5 | 4 | simpld | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝐴 ⊆ 𝐵 ) |