Step |
Hyp |
Ref |
Expression |
1 |
|
subrgrcl |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝑅 ∈ Ring ) |
2 |
|
ringgrp |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) |
3 |
1 2
|
syl |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝑅 ∈ Grp ) |
4 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
5 |
4
|
subrgss |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝐴 ⊆ ( Base ‘ 𝑅 ) ) |
6 |
|
eqid |
⊢ ( 𝑅 ↾s 𝐴 ) = ( 𝑅 ↾s 𝐴 ) |
7 |
6
|
subrgring |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( 𝑅 ↾s 𝐴 ) ∈ Ring ) |
8 |
|
ringgrp |
⊢ ( ( 𝑅 ↾s 𝐴 ) ∈ Ring → ( 𝑅 ↾s 𝐴 ) ∈ Grp ) |
9 |
7 8
|
syl |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( 𝑅 ↾s 𝐴 ) ∈ Grp ) |
10 |
4
|
issubg |
⊢ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ↔ ( 𝑅 ∈ Grp ∧ 𝐴 ⊆ ( Base ‘ 𝑅 ) ∧ ( 𝑅 ↾s 𝐴 ) ∈ Grp ) ) |
11 |
3 5 9 10
|
syl3anbrc |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ) |