| Step | Hyp | Ref | Expression | 
						
							| 1 |  | subrgsubm.1 | ⊢ 𝑀  =  ( mulGrp ‘ 𝑅 ) | 
						
							| 2 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 3 | 2 | subrgss | ⊢ ( 𝐴  ∈  ( SubRing ‘ 𝑅 )  →  𝐴  ⊆  ( Base ‘ 𝑅 ) ) | 
						
							| 4 |  | eqid | ⊢ ( 1r ‘ 𝑅 )  =  ( 1r ‘ 𝑅 ) | 
						
							| 5 | 4 | subrg1cl | ⊢ ( 𝐴  ∈  ( SubRing ‘ 𝑅 )  →  ( 1r ‘ 𝑅 )  ∈  𝐴 ) | 
						
							| 6 |  | subrgrcl | ⊢ ( 𝐴  ∈  ( SubRing ‘ 𝑅 )  →  𝑅  ∈  Ring ) | 
						
							| 7 |  | eqid | ⊢ ( 𝑅  ↾s  𝐴 )  =  ( 𝑅  ↾s  𝐴 ) | 
						
							| 8 | 7 1 | mgpress | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐴  ∈  ( SubRing ‘ 𝑅 ) )  →  ( 𝑀  ↾s  𝐴 )  =  ( mulGrp ‘ ( 𝑅  ↾s  𝐴 ) ) ) | 
						
							| 9 | 6 8 | mpancom | ⊢ ( 𝐴  ∈  ( SubRing ‘ 𝑅 )  →  ( 𝑀  ↾s  𝐴 )  =  ( mulGrp ‘ ( 𝑅  ↾s  𝐴 ) ) ) | 
						
							| 10 | 7 | subrgring | ⊢ ( 𝐴  ∈  ( SubRing ‘ 𝑅 )  →  ( 𝑅  ↾s  𝐴 )  ∈  Ring ) | 
						
							| 11 |  | eqid | ⊢ ( mulGrp ‘ ( 𝑅  ↾s  𝐴 ) )  =  ( mulGrp ‘ ( 𝑅  ↾s  𝐴 ) ) | 
						
							| 12 | 11 | ringmgp | ⊢ ( ( 𝑅  ↾s  𝐴 )  ∈  Ring  →  ( mulGrp ‘ ( 𝑅  ↾s  𝐴 ) )  ∈  Mnd ) | 
						
							| 13 | 10 12 | syl | ⊢ ( 𝐴  ∈  ( SubRing ‘ 𝑅 )  →  ( mulGrp ‘ ( 𝑅  ↾s  𝐴 ) )  ∈  Mnd ) | 
						
							| 14 | 9 13 | eqeltrd | ⊢ ( 𝐴  ∈  ( SubRing ‘ 𝑅 )  →  ( 𝑀  ↾s  𝐴 )  ∈  Mnd ) | 
						
							| 15 | 1 | ringmgp | ⊢ ( 𝑅  ∈  Ring  →  𝑀  ∈  Mnd ) | 
						
							| 16 | 1 2 | mgpbas | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑀 ) | 
						
							| 17 | 1 4 | ringidval | ⊢ ( 1r ‘ 𝑅 )  =  ( 0g ‘ 𝑀 ) | 
						
							| 18 |  | eqid | ⊢ ( 𝑀  ↾s  𝐴 )  =  ( 𝑀  ↾s  𝐴 ) | 
						
							| 19 | 16 17 18 | issubm2 | ⊢ ( 𝑀  ∈  Mnd  →  ( 𝐴  ∈  ( SubMnd ‘ 𝑀 )  ↔  ( 𝐴  ⊆  ( Base ‘ 𝑅 )  ∧  ( 1r ‘ 𝑅 )  ∈  𝐴  ∧  ( 𝑀  ↾s  𝐴 )  ∈  Mnd ) ) ) | 
						
							| 20 | 6 15 19 | 3syl | ⊢ ( 𝐴  ∈  ( SubRing ‘ 𝑅 )  →  ( 𝐴  ∈  ( SubMnd ‘ 𝑀 )  ↔  ( 𝐴  ⊆  ( Base ‘ 𝑅 )  ∧  ( 1r ‘ 𝑅 )  ∈  𝐴  ∧  ( 𝑀  ↾s  𝐴 )  ∈  Mnd ) ) ) | 
						
							| 21 | 3 5 14 20 | mpbir3and | ⊢ ( 𝐴  ∈  ( SubRing ‘ 𝑅 )  →  𝐴  ∈  ( SubMnd ‘ 𝑀 ) ) |