Step |
Hyp |
Ref |
Expression |
1 |
|
subrgsubm.1 |
⊢ 𝑀 = ( mulGrp ‘ 𝑅 ) |
2 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
3 |
2
|
subrgss |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝐴 ⊆ ( Base ‘ 𝑅 ) ) |
4 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
5 |
4
|
subrg1cl |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( 1r ‘ 𝑅 ) ∈ 𝐴 ) |
6 |
|
subrgrcl |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝑅 ∈ Ring ) |
7 |
|
eqid |
⊢ ( 𝑅 ↾s 𝐴 ) = ( 𝑅 ↾s 𝐴 ) |
8 |
7 1
|
mgpress |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) → ( 𝑀 ↾s 𝐴 ) = ( mulGrp ‘ ( 𝑅 ↾s 𝐴 ) ) ) |
9 |
6 8
|
mpancom |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( 𝑀 ↾s 𝐴 ) = ( mulGrp ‘ ( 𝑅 ↾s 𝐴 ) ) ) |
10 |
7
|
subrgring |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( 𝑅 ↾s 𝐴 ) ∈ Ring ) |
11 |
|
eqid |
⊢ ( mulGrp ‘ ( 𝑅 ↾s 𝐴 ) ) = ( mulGrp ‘ ( 𝑅 ↾s 𝐴 ) ) |
12 |
11
|
ringmgp |
⊢ ( ( 𝑅 ↾s 𝐴 ) ∈ Ring → ( mulGrp ‘ ( 𝑅 ↾s 𝐴 ) ) ∈ Mnd ) |
13 |
10 12
|
syl |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( mulGrp ‘ ( 𝑅 ↾s 𝐴 ) ) ∈ Mnd ) |
14 |
9 13
|
eqeltrd |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( 𝑀 ↾s 𝐴 ) ∈ Mnd ) |
15 |
1
|
ringmgp |
⊢ ( 𝑅 ∈ Ring → 𝑀 ∈ Mnd ) |
16 |
1 2
|
mgpbas |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑀 ) |
17 |
1 4
|
ringidval |
⊢ ( 1r ‘ 𝑅 ) = ( 0g ‘ 𝑀 ) |
18 |
|
eqid |
⊢ ( 𝑀 ↾s 𝐴 ) = ( 𝑀 ↾s 𝐴 ) |
19 |
16 17 18
|
issubm2 |
⊢ ( 𝑀 ∈ Mnd → ( 𝐴 ∈ ( SubMnd ‘ 𝑀 ) ↔ ( 𝐴 ⊆ ( Base ‘ 𝑅 ) ∧ ( 1r ‘ 𝑅 ) ∈ 𝐴 ∧ ( 𝑀 ↾s 𝐴 ) ∈ Mnd ) ) ) |
20 |
6 15 19
|
3syl |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( 𝐴 ∈ ( SubMnd ‘ 𝑀 ) ↔ ( 𝐴 ⊆ ( Base ‘ 𝑅 ) ∧ ( 1r ‘ 𝑅 ) ∈ 𝐴 ∧ ( 𝑀 ↾s 𝐴 ) ∈ Mnd ) ) ) |
21 |
3 5 14 20
|
mpbir3and |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝐴 ∈ ( SubMnd ‘ 𝑀 ) ) |