| Step | Hyp | Ref | Expression | 
						
							| 1 |  | subrgugrp.1 | ⊢ 𝑆  =  ( 𝑅  ↾s  𝐴 ) | 
						
							| 2 |  | subrgugrp.2 | ⊢ 𝑈  =  ( Unit ‘ 𝑅 ) | 
						
							| 3 |  | subrgugrp.3 | ⊢ 𝑉  =  ( Unit ‘ 𝑆 ) | 
						
							| 4 |  | subrgugrp.4 | ⊢ 𝐺  =  ( ( mulGrp ‘ 𝑅 )  ↾s  𝑈 ) | 
						
							| 5 | 1 2 3 | subrguss | ⊢ ( 𝐴  ∈  ( SubRing ‘ 𝑅 )  →  𝑉  ⊆  𝑈 ) | 
						
							| 6 | 1 | subrgring | ⊢ ( 𝐴  ∈  ( SubRing ‘ 𝑅 )  →  𝑆  ∈  Ring ) | 
						
							| 7 |  | eqid | ⊢ ( 1r ‘ 𝑆 )  =  ( 1r ‘ 𝑆 ) | 
						
							| 8 | 3 7 | 1unit | ⊢ ( 𝑆  ∈  Ring  →  ( 1r ‘ 𝑆 )  ∈  𝑉 ) | 
						
							| 9 |  | ne0i | ⊢ ( ( 1r ‘ 𝑆 )  ∈  𝑉  →  𝑉  ≠  ∅ ) | 
						
							| 10 | 6 8 9 | 3syl | ⊢ ( 𝐴  ∈  ( SubRing ‘ 𝑅 )  →  𝑉  ≠  ∅ ) | 
						
							| 11 |  | eqid | ⊢ ( .r ‘ 𝑅 )  =  ( .r ‘ 𝑅 ) | 
						
							| 12 | 1 11 | ressmulr | ⊢ ( 𝐴  ∈  ( SubRing ‘ 𝑅 )  →  ( .r ‘ 𝑅 )  =  ( .r ‘ 𝑆 ) ) | 
						
							| 13 | 12 | 3ad2ant1 | ⊢ ( ( 𝐴  ∈  ( SubRing ‘ 𝑅 )  ∧  𝑥  ∈  𝑉  ∧  𝑦  ∈  𝑉 )  →  ( .r ‘ 𝑅 )  =  ( .r ‘ 𝑆 ) ) | 
						
							| 14 | 13 | oveqd | ⊢ ( ( 𝐴  ∈  ( SubRing ‘ 𝑅 )  ∧  𝑥  ∈  𝑉  ∧  𝑦  ∈  𝑉 )  →  ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 )  =  ( 𝑥 ( .r ‘ 𝑆 ) 𝑦 ) ) | 
						
							| 15 |  | eqid | ⊢ ( .r ‘ 𝑆 )  =  ( .r ‘ 𝑆 ) | 
						
							| 16 | 3 15 | unitmulcl | ⊢ ( ( 𝑆  ∈  Ring  ∧  𝑥  ∈  𝑉  ∧  𝑦  ∈  𝑉 )  →  ( 𝑥 ( .r ‘ 𝑆 ) 𝑦 )  ∈  𝑉 ) | 
						
							| 17 | 6 16 | syl3an1 | ⊢ ( ( 𝐴  ∈  ( SubRing ‘ 𝑅 )  ∧  𝑥  ∈  𝑉  ∧  𝑦  ∈  𝑉 )  →  ( 𝑥 ( .r ‘ 𝑆 ) 𝑦 )  ∈  𝑉 ) | 
						
							| 18 | 14 17 | eqeltrd | ⊢ ( ( 𝐴  ∈  ( SubRing ‘ 𝑅 )  ∧  𝑥  ∈  𝑉  ∧  𝑦  ∈  𝑉 )  →  ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 )  ∈  𝑉 ) | 
						
							| 19 | 18 | 3expa | ⊢ ( ( ( 𝐴  ∈  ( SubRing ‘ 𝑅 )  ∧  𝑥  ∈  𝑉 )  ∧  𝑦  ∈  𝑉 )  →  ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 )  ∈  𝑉 ) | 
						
							| 20 | 19 | ralrimiva | ⊢ ( ( 𝐴  ∈  ( SubRing ‘ 𝑅 )  ∧  𝑥  ∈  𝑉 )  →  ∀ 𝑦  ∈  𝑉 ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 )  ∈  𝑉 ) | 
						
							| 21 |  | eqid | ⊢ ( invr ‘ 𝑅 )  =  ( invr ‘ 𝑅 ) | 
						
							| 22 |  | eqid | ⊢ ( invr ‘ 𝑆 )  =  ( invr ‘ 𝑆 ) | 
						
							| 23 | 1 21 3 22 | subrginv | ⊢ ( ( 𝐴  ∈  ( SubRing ‘ 𝑅 )  ∧  𝑥  ∈  𝑉 )  →  ( ( invr ‘ 𝑅 ) ‘ 𝑥 )  =  ( ( invr ‘ 𝑆 ) ‘ 𝑥 ) ) | 
						
							| 24 | 3 22 | unitinvcl | ⊢ ( ( 𝑆  ∈  Ring  ∧  𝑥  ∈  𝑉 )  →  ( ( invr ‘ 𝑆 ) ‘ 𝑥 )  ∈  𝑉 ) | 
						
							| 25 | 6 24 | sylan | ⊢ ( ( 𝐴  ∈  ( SubRing ‘ 𝑅 )  ∧  𝑥  ∈  𝑉 )  →  ( ( invr ‘ 𝑆 ) ‘ 𝑥 )  ∈  𝑉 ) | 
						
							| 26 | 23 25 | eqeltrd | ⊢ ( ( 𝐴  ∈  ( SubRing ‘ 𝑅 )  ∧  𝑥  ∈  𝑉 )  →  ( ( invr ‘ 𝑅 ) ‘ 𝑥 )  ∈  𝑉 ) | 
						
							| 27 | 20 26 | jca | ⊢ ( ( 𝐴  ∈  ( SubRing ‘ 𝑅 )  ∧  𝑥  ∈  𝑉 )  →  ( ∀ 𝑦  ∈  𝑉 ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 )  ∈  𝑉  ∧  ( ( invr ‘ 𝑅 ) ‘ 𝑥 )  ∈  𝑉 ) ) | 
						
							| 28 | 27 | ralrimiva | ⊢ ( 𝐴  ∈  ( SubRing ‘ 𝑅 )  →  ∀ 𝑥  ∈  𝑉 ( ∀ 𝑦  ∈  𝑉 ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 )  ∈  𝑉  ∧  ( ( invr ‘ 𝑅 ) ‘ 𝑥 )  ∈  𝑉 ) ) | 
						
							| 29 |  | subrgrcl | ⊢ ( 𝐴  ∈  ( SubRing ‘ 𝑅 )  →  𝑅  ∈  Ring ) | 
						
							| 30 | 2 4 | unitgrp | ⊢ ( 𝑅  ∈  Ring  →  𝐺  ∈  Grp ) | 
						
							| 31 | 2 4 | unitgrpbas | ⊢ 𝑈  =  ( Base ‘ 𝐺 ) | 
						
							| 32 | 2 | fvexi | ⊢ 𝑈  ∈  V | 
						
							| 33 |  | eqid | ⊢ ( mulGrp ‘ 𝑅 )  =  ( mulGrp ‘ 𝑅 ) | 
						
							| 34 | 33 11 | mgpplusg | ⊢ ( .r ‘ 𝑅 )  =  ( +g ‘ ( mulGrp ‘ 𝑅 ) ) | 
						
							| 35 | 4 34 | ressplusg | ⊢ ( 𝑈  ∈  V  →  ( .r ‘ 𝑅 )  =  ( +g ‘ 𝐺 ) ) | 
						
							| 36 | 32 35 | ax-mp | ⊢ ( .r ‘ 𝑅 )  =  ( +g ‘ 𝐺 ) | 
						
							| 37 | 2 4 21 | invrfval | ⊢ ( invr ‘ 𝑅 )  =  ( invg ‘ 𝐺 ) | 
						
							| 38 | 31 36 37 | issubg2 | ⊢ ( 𝐺  ∈  Grp  →  ( 𝑉  ∈  ( SubGrp ‘ 𝐺 )  ↔  ( 𝑉  ⊆  𝑈  ∧  𝑉  ≠  ∅  ∧  ∀ 𝑥  ∈  𝑉 ( ∀ 𝑦  ∈  𝑉 ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 )  ∈  𝑉  ∧  ( ( invr ‘ 𝑅 ) ‘ 𝑥 )  ∈  𝑉 ) ) ) ) | 
						
							| 39 | 29 30 38 | 3syl | ⊢ ( 𝐴  ∈  ( SubRing ‘ 𝑅 )  →  ( 𝑉  ∈  ( SubGrp ‘ 𝐺 )  ↔  ( 𝑉  ⊆  𝑈  ∧  𝑉  ≠  ∅  ∧  ∀ 𝑥  ∈  𝑉 ( ∀ 𝑦  ∈  𝑉 ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 )  ∈  𝑉  ∧  ( ( invr ‘ 𝑅 ) ‘ 𝑥 )  ∈  𝑉 ) ) ) ) | 
						
							| 40 | 5 10 28 39 | mpbir3and | ⊢ ( 𝐴  ∈  ( SubRing ‘ 𝑅 )  →  𝑉  ∈  ( SubGrp ‘ 𝐺 ) ) |