Metamath Proof Explorer


Theorem subrguss

Description: A unit of a subring is a unit of the parent ring. (Contributed by Mario Carneiro, 4-Dec-2014)

Ref Expression
Hypotheses subrguss.1 𝑆 = ( 𝑅s 𝐴 )
subrguss.2 𝑈 = ( Unit ‘ 𝑅 )
subrguss.3 𝑉 = ( Unit ‘ 𝑆 )
Assertion subrguss ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝑉𝑈 )

Proof

Step Hyp Ref Expression
1 subrguss.1 𝑆 = ( 𝑅s 𝐴 )
2 subrguss.2 𝑈 = ( Unit ‘ 𝑅 )
3 subrguss.3 𝑉 = ( Unit ‘ 𝑆 )
4 simpr ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥𝑉 ) → 𝑥𝑉 )
5 eqid ( 1r𝑆 ) = ( 1r𝑆 )
6 eqid ( ∥r𝑆 ) = ( ∥r𝑆 )
7 eqid ( oppr𝑆 ) = ( oppr𝑆 )
8 eqid ( ∥r ‘ ( oppr𝑆 ) ) = ( ∥r ‘ ( oppr𝑆 ) )
9 3 5 6 7 8 isunit ( 𝑥𝑉 ↔ ( 𝑥 ( ∥r𝑆 ) ( 1r𝑆 ) ∧ 𝑥 ( ∥r ‘ ( oppr𝑆 ) ) ( 1r𝑆 ) ) )
10 4 9 sylib ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥𝑉 ) → ( 𝑥 ( ∥r𝑆 ) ( 1r𝑆 ) ∧ 𝑥 ( ∥r ‘ ( oppr𝑆 ) ) ( 1r𝑆 ) ) )
11 10 simpld ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥𝑉 ) → 𝑥 ( ∥r𝑆 ) ( 1r𝑆 ) )
12 eqid ( 1r𝑅 ) = ( 1r𝑅 )
13 1 12 subrg1 ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( 1r𝑅 ) = ( 1r𝑆 ) )
14 13 adantr ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥𝑉 ) → ( 1r𝑅 ) = ( 1r𝑆 ) )
15 11 14 breqtrrd ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥𝑉 ) → 𝑥 ( ∥r𝑆 ) ( 1r𝑅 ) )
16 eqid ( ∥r𝑅 ) = ( ∥r𝑅 )
17 1 16 6 subrgdvds ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( ∥r𝑆 ) ⊆ ( ∥r𝑅 ) )
18 17 adantr ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥𝑉 ) → ( ∥r𝑆 ) ⊆ ( ∥r𝑅 ) )
19 18 ssbrd ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥𝑉 ) → ( 𝑥 ( ∥r𝑆 ) ( 1r𝑅 ) → 𝑥 ( ∥r𝑅 ) ( 1r𝑅 ) ) )
20 15 19 mpd ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥𝑉 ) → 𝑥 ( ∥r𝑅 ) ( 1r𝑅 ) )
21 1 subrgbas ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝐴 = ( Base ‘ 𝑆 ) )
22 21 adantr ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥𝑉 ) → 𝐴 = ( Base ‘ 𝑆 ) )
23 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
24 23 subrgss ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝐴 ⊆ ( Base ‘ 𝑅 ) )
25 24 adantr ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥𝑉 ) → 𝐴 ⊆ ( Base ‘ 𝑅 ) )
26 22 25 eqsstrrd ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥𝑉 ) → ( Base ‘ 𝑆 ) ⊆ ( Base ‘ 𝑅 ) )
27 eqid ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 )
28 27 3 unitcl ( 𝑥𝑉𝑥 ∈ ( Base ‘ 𝑆 ) )
29 28 adantl ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥𝑉 ) → 𝑥 ∈ ( Base ‘ 𝑆 ) )
30 26 29 sseldd ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥𝑉 ) → 𝑥 ∈ ( Base ‘ 𝑅 ) )
31 1 subrgring ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝑆 ∈ Ring )
32 eqid ( invr𝑆 ) = ( invr𝑆 )
33 3 32 27 ringinvcl ( ( 𝑆 ∈ Ring ∧ 𝑥𝑉 ) → ( ( invr𝑆 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝑆 ) )
34 31 33 sylan ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥𝑉 ) → ( ( invr𝑆 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝑆 ) )
35 26 34 sseldd ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥𝑉 ) → ( ( invr𝑆 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝑅 ) )
36 eqid ( oppr𝑅 ) = ( oppr𝑅 )
37 36 23 opprbas ( Base ‘ 𝑅 ) = ( Base ‘ ( oppr𝑅 ) )
38 eqid ( ∥r ‘ ( oppr𝑅 ) ) = ( ∥r ‘ ( oppr𝑅 ) )
39 eqid ( .r ‘ ( oppr𝑅 ) ) = ( .r ‘ ( oppr𝑅 ) )
40 37 38 39 dvdsrmul ( ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ ( ( invr𝑆 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝑅 ) ) → 𝑥 ( ∥r ‘ ( oppr𝑅 ) ) ( ( ( invr𝑆 ) ‘ 𝑥 ) ( .r ‘ ( oppr𝑅 ) ) 𝑥 ) )
41 30 35 40 syl2anc ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥𝑉 ) → 𝑥 ( ∥r ‘ ( oppr𝑅 ) ) ( ( ( invr𝑆 ) ‘ 𝑥 ) ( .r ‘ ( oppr𝑅 ) ) 𝑥 ) )
42 eqid ( .r𝑅 ) = ( .r𝑅 )
43 23 42 36 39 opprmul ( ( ( invr𝑆 ) ‘ 𝑥 ) ( .r ‘ ( oppr𝑅 ) ) 𝑥 ) = ( 𝑥 ( .r𝑅 ) ( ( invr𝑆 ) ‘ 𝑥 ) )
44 eqid ( .r𝑆 ) = ( .r𝑆 )
45 3 32 44 5 unitrinv ( ( 𝑆 ∈ Ring ∧ 𝑥𝑉 ) → ( 𝑥 ( .r𝑆 ) ( ( invr𝑆 ) ‘ 𝑥 ) ) = ( 1r𝑆 ) )
46 31 45 sylan ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥𝑉 ) → ( 𝑥 ( .r𝑆 ) ( ( invr𝑆 ) ‘ 𝑥 ) ) = ( 1r𝑆 ) )
47 1 42 ressmulr ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( .r𝑅 ) = ( .r𝑆 ) )
48 47 adantr ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥𝑉 ) → ( .r𝑅 ) = ( .r𝑆 ) )
49 48 oveqd ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥𝑉 ) → ( 𝑥 ( .r𝑅 ) ( ( invr𝑆 ) ‘ 𝑥 ) ) = ( 𝑥 ( .r𝑆 ) ( ( invr𝑆 ) ‘ 𝑥 ) ) )
50 46 49 14 3eqtr4d ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥𝑉 ) → ( 𝑥 ( .r𝑅 ) ( ( invr𝑆 ) ‘ 𝑥 ) ) = ( 1r𝑅 ) )
51 43 50 eqtrid ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥𝑉 ) → ( ( ( invr𝑆 ) ‘ 𝑥 ) ( .r ‘ ( oppr𝑅 ) ) 𝑥 ) = ( 1r𝑅 ) )
52 41 51 breqtrd ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥𝑉 ) → 𝑥 ( ∥r ‘ ( oppr𝑅 ) ) ( 1r𝑅 ) )
53 2 12 16 36 38 isunit ( 𝑥𝑈 ↔ ( 𝑥 ( ∥r𝑅 ) ( 1r𝑅 ) ∧ 𝑥 ( ∥r ‘ ( oppr𝑅 ) ) ( 1r𝑅 ) ) )
54 20 52 53 sylanbrc ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥𝑉 ) → 𝑥𝑈 )
55 54 ex ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( 𝑥𝑉𝑥𝑈 ) )
56 55 ssrdv ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝑉𝑈 )