Step |
Hyp |
Ref |
Expression |
1 |
|
subrguss.1 |
⊢ 𝑆 = ( 𝑅 ↾s 𝐴 ) |
2 |
|
subrguss.2 |
⊢ 𝑈 = ( Unit ‘ 𝑅 ) |
3 |
|
subrguss.3 |
⊢ 𝑉 = ( Unit ‘ 𝑆 ) |
4 |
|
simpr |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥 ∈ 𝑉 ) → 𝑥 ∈ 𝑉 ) |
5 |
|
eqid |
⊢ ( 1r ‘ 𝑆 ) = ( 1r ‘ 𝑆 ) |
6 |
|
eqid |
⊢ ( ∥r ‘ 𝑆 ) = ( ∥r ‘ 𝑆 ) |
7 |
|
eqid |
⊢ ( oppr ‘ 𝑆 ) = ( oppr ‘ 𝑆 ) |
8 |
|
eqid |
⊢ ( ∥r ‘ ( oppr ‘ 𝑆 ) ) = ( ∥r ‘ ( oppr ‘ 𝑆 ) ) |
9 |
3 5 6 7 8
|
isunit |
⊢ ( 𝑥 ∈ 𝑉 ↔ ( 𝑥 ( ∥r ‘ 𝑆 ) ( 1r ‘ 𝑆 ) ∧ 𝑥 ( ∥r ‘ ( oppr ‘ 𝑆 ) ) ( 1r ‘ 𝑆 ) ) ) |
10 |
4 9
|
sylib |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥 ∈ 𝑉 ) → ( 𝑥 ( ∥r ‘ 𝑆 ) ( 1r ‘ 𝑆 ) ∧ 𝑥 ( ∥r ‘ ( oppr ‘ 𝑆 ) ) ( 1r ‘ 𝑆 ) ) ) |
11 |
10
|
simpld |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥 ∈ 𝑉 ) → 𝑥 ( ∥r ‘ 𝑆 ) ( 1r ‘ 𝑆 ) ) |
12 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
13 |
1 12
|
subrg1 |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑆 ) ) |
14 |
13
|
adantr |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥 ∈ 𝑉 ) → ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑆 ) ) |
15 |
11 14
|
breqtrrd |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥 ∈ 𝑉 ) → 𝑥 ( ∥r ‘ 𝑆 ) ( 1r ‘ 𝑅 ) ) |
16 |
|
eqid |
⊢ ( ∥r ‘ 𝑅 ) = ( ∥r ‘ 𝑅 ) |
17 |
1 16 6
|
subrgdvds |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( ∥r ‘ 𝑆 ) ⊆ ( ∥r ‘ 𝑅 ) ) |
18 |
17
|
adantr |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥 ∈ 𝑉 ) → ( ∥r ‘ 𝑆 ) ⊆ ( ∥r ‘ 𝑅 ) ) |
19 |
18
|
ssbrd |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥 ∈ 𝑉 ) → ( 𝑥 ( ∥r ‘ 𝑆 ) ( 1r ‘ 𝑅 ) → 𝑥 ( ∥r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) |
20 |
15 19
|
mpd |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥 ∈ 𝑉 ) → 𝑥 ( ∥r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) |
21 |
1
|
subrgbas |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝐴 = ( Base ‘ 𝑆 ) ) |
22 |
21
|
adantr |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥 ∈ 𝑉 ) → 𝐴 = ( Base ‘ 𝑆 ) ) |
23 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
24 |
23
|
subrgss |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝐴 ⊆ ( Base ‘ 𝑅 ) ) |
25 |
24
|
adantr |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥 ∈ 𝑉 ) → 𝐴 ⊆ ( Base ‘ 𝑅 ) ) |
26 |
22 25
|
eqsstrrd |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥 ∈ 𝑉 ) → ( Base ‘ 𝑆 ) ⊆ ( Base ‘ 𝑅 ) ) |
27 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
28 |
27 3
|
unitcl |
⊢ ( 𝑥 ∈ 𝑉 → 𝑥 ∈ ( Base ‘ 𝑆 ) ) |
29 |
28
|
adantl |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥 ∈ 𝑉 ) → 𝑥 ∈ ( Base ‘ 𝑆 ) ) |
30 |
26 29
|
sseldd |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥 ∈ 𝑉 ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) |
31 |
1
|
subrgring |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝑆 ∈ Ring ) |
32 |
|
eqid |
⊢ ( invr ‘ 𝑆 ) = ( invr ‘ 𝑆 ) |
33 |
3 32 27
|
ringinvcl |
⊢ ( ( 𝑆 ∈ Ring ∧ 𝑥 ∈ 𝑉 ) → ( ( invr ‘ 𝑆 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝑆 ) ) |
34 |
31 33
|
sylan |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥 ∈ 𝑉 ) → ( ( invr ‘ 𝑆 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝑆 ) ) |
35 |
26 34
|
sseldd |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥 ∈ 𝑉 ) → ( ( invr ‘ 𝑆 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝑅 ) ) |
36 |
|
eqid |
⊢ ( oppr ‘ 𝑅 ) = ( oppr ‘ 𝑅 ) |
37 |
36 23
|
opprbas |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ ( oppr ‘ 𝑅 ) ) |
38 |
|
eqid |
⊢ ( ∥r ‘ ( oppr ‘ 𝑅 ) ) = ( ∥r ‘ ( oppr ‘ 𝑅 ) ) |
39 |
|
eqid |
⊢ ( .r ‘ ( oppr ‘ 𝑅 ) ) = ( .r ‘ ( oppr ‘ 𝑅 ) ) |
40 |
37 38 39
|
dvdsrmul |
⊢ ( ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ ( ( invr ‘ 𝑆 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝑅 ) ) → 𝑥 ( ∥r ‘ ( oppr ‘ 𝑅 ) ) ( ( ( invr ‘ 𝑆 ) ‘ 𝑥 ) ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) ) |
41 |
30 35 40
|
syl2anc |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥 ∈ 𝑉 ) → 𝑥 ( ∥r ‘ ( oppr ‘ 𝑅 ) ) ( ( ( invr ‘ 𝑆 ) ‘ 𝑥 ) ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) ) |
42 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
43 |
23 42 36 39
|
opprmul |
⊢ ( ( ( invr ‘ 𝑆 ) ‘ 𝑥 ) ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) = ( 𝑥 ( .r ‘ 𝑅 ) ( ( invr ‘ 𝑆 ) ‘ 𝑥 ) ) |
44 |
|
eqid |
⊢ ( .r ‘ 𝑆 ) = ( .r ‘ 𝑆 ) |
45 |
3 32 44 5
|
unitrinv |
⊢ ( ( 𝑆 ∈ Ring ∧ 𝑥 ∈ 𝑉 ) → ( 𝑥 ( .r ‘ 𝑆 ) ( ( invr ‘ 𝑆 ) ‘ 𝑥 ) ) = ( 1r ‘ 𝑆 ) ) |
46 |
31 45
|
sylan |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥 ∈ 𝑉 ) → ( 𝑥 ( .r ‘ 𝑆 ) ( ( invr ‘ 𝑆 ) ‘ 𝑥 ) ) = ( 1r ‘ 𝑆 ) ) |
47 |
1 42
|
ressmulr |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( .r ‘ 𝑅 ) = ( .r ‘ 𝑆 ) ) |
48 |
47
|
adantr |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥 ∈ 𝑉 ) → ( .r ‘ 𝑅 ) = ( .r ‘ 𝑆 ) ) |
49 |
48
|
oveqd |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥 ∈ 𝑉 ) → ( 𝑥 ( .r ‘ 𝑅 ) ( ( invr ‘ 𝑆 ) ‘ 𝑥 ) ) = ( 𝑥 ( .r ‘ 𝑆 ) ( ( invr ‘ 𝑆 ) ‘ 𝑥 ) ) ) |
50 |
46 49 14
|
3eqtr4d |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥 ∈ 𝑉 ) → ( 𝑥 ( .r ‘ 𝑅 ) ( ( invr ‘ 𝑆 ) ‘ 𝑥 ) ) = ( 1r ‘ 𝑅 ) ) |
51 |
43 50
|
eqtrid |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥 ∈ 𝑉 ) → ( ( ( invr ‘ 𝑆 ) ‘ 𝑥 ) ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) |
52 |
41 51
|
breqtrd |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥 ∈ 𝑉 ) → 𝑥 ( ∥r ‘ ( oppr ‘ 𝑅 ) ) ( 1r ‘ 𝑅 ) ) |
53 |
2 12 16 36 38
|
isunit |
⊢ ( 𝑥 ∈ 𝑈 ↔ ( 𝑥 ( ∥r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ∧ 𝑥 ( ∥r ‘ ( oppr ‘ 𝑅 ) ) ( 1r ‘ 𝑅 ) ) ) |
54 |
20 52 53
|
sylanbrc |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥 ∈ 𝑉 ) → 𝑥 ∈ 𝑈 ) |
55 |
54
|
ex |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( 𝑥 ∈ 𝑉 → 𝑥 ∈ 𝑈 ) ) |
56 |
55
|
ssrdv |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝑉 ⊆ 𝑈 ) |