Metamath Proof Explorer


Theorem subridom

Description: A subring of an integral domain is an integral domain. (Contributed by Thierry Arnoux, 18-May-2025)

Ref Expression
Hypotheses subridom.1 ( 𝜑𝑅 ∈ IDomn )
subridom.2 ( 𝜑𝑆 ∈ ( SubRing ‘ 𝑅 ) )
Assertion subridom ( 𝜑 → ( 𝑅s 𝑆 ) ∈ IDomn )

Proof

Step Hyp Ref Expression
1 subridom.1 ( 𝜑𝑅 ∈ IDomn )
2 subridom.2 ( 𝜑𝑆 ∈ ( SubRing ‘ 𝑅 ) )
3 1 idomcringd ( 𝜑𝑅 ∈ CRing )
4 eqid ( 𝑅s 𝑆 ) = ( 𝑅s 𝑆 )
5 4 subrgcrng ( ( 𝑅 ∈ CRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑅 ) ) → ( 𝑅s 𝑆 ) ∈ CRing )
6 3 2 5 syl2anc ( 𝜑 → ( 𝑅s 𝑆 ) ∈ CRing )
7 1 idomdomd ( 𝜑𝑅 ∈ Domn )
8 7 2 subrdom ( 𝜑 → ( 𝑅s 𝑆 ) ∈ Domn )
9 isidom ( ( 𝑅s 𝑆 ) ∈ IDomn ↔ ( ( 𝑅s 𝑆 ) ∈ CRing ∧ ( 𝑅s 𝑆 ) ∈ Domn ) )
10 6 8 9 sylanbrc ( 𝜑 → ( 𝑅s 𝑆 ) ∈ IDomn )