| Step | Hyp | Ref | Expression | 
						
							| 1 |  | subrngmcl.p | ⊢  ·   =  ( .r ‘ 𝑅 ) | 
						
							| 2 |  | eqid | ⊢ ( 𝑅  ↾s  𝐴 )  =  ( 𝑅  ↾s  𝐴 ) | 
						
							| 3 | 2 | subrngrng | ⊢ ( 𝐴  ∈  ( SubRng ‘ 𝑅 )  →  ( 𝑅  ↾s  𝐴 )  ∈  Rng ) | 
						
							| 4 | 3 | 3ad2ant1 | ⊢ ( ( 𝐴  ∈  ( SubRng ‘ 𝑅 )  ∧  𝑋  ∈  𝐴  ∧  𝑌  ∈  𝐴 )  →  ( 𝑅  ↾s  𝐴 )  ∈  Rng ) | 
						
							| 5 |  | simp2 | ⊢ ( ( 𝐴  ∈  ( SubRng ‘ 𝑅 )  ∧  𝑋  ∈  𝐴  ∧  𝑌  ∈  𝐴 )  →  𝑋  ∈  𝐴 ) | 
						
							| 6 | 2 | subrngbas | ⊢ ( 𝐴  ∈  ( SubRng ‘ 𝑅 )  →  𝐴  =  ( Base ‘ ( 𝑅  ↾s  𝐴 ) ) ) | 
						
							| 7 | 6 | 3ad2ant1 | ⊢ ( ( 𝐴  ∈  ( SubRng ‘ 𝑅 )  ∧  𝑋  ∈  𝐴  ∧  𝑌  ∈  𝐴 )  →  𝐴  =  ( Base ‘ ( 𝑅  ↾s  𝐴 ) ) ) | 
						
							| 8 | 5 7 | eleqtrd | ⊢ ( ( 𝐴  ∈  ( SubRng ‘ 𝑅 )  ∧  𝑋  ∈  𝐴  ∧  𝑌  ∈  𝐴 )  →  𝑋  ∈  ( Base ‘ ( 𝑅  ↾s  𝐴 ) ) ) | 
						
							| 9 |  | simp3 | ⊢ ( ( 𝐴  ∈  ( SubRng ‘ 𝑅 )  ∧  𝑋  ∈  𝐴  ∧  𝑌  ∈  𝐴 )  →  𝑌  ∈  𝐴 ) | 
						
							| 10 | 9 7 | eleqtrd | ⊢ ( ( 𝐴  ∈  ( SubRng ‘ 𝑅 )  ∧  𝑋  ∈  𝐴  ∧  𝑌  ∈  𝐴 )  →  𝑌  ∈  ( Base ‘ ( 𝑅  ↾s  𝐴 ) ) ) | 
						
							| 11 |  | eqid | ⊢ ( Base ‘ ( 𝑅  ↾s  𝐴 ) )  =  ( Base ‘ ( 𝑅  ↾s  𝐴 ) ) | 
						
							| 12 |  | eqid | ⊢ ( .r ‘ ( 𝑅  ↾s  𝐴 ) )  =  ( .r ‘ ( 𝑅  ↾s  𝐴 ) ) | 
						
							| 13 | 11 12 | rngcl | ⊢ ( ( ( 𝑅  ↾s  𝐴 )  ∈  Rng  ∧  𝑋  ∈  ( Base ‘ ( 𝑅  ↾s  𝐴 ) )  ∧  𝑌  ∈  ( Base ‘ ( 𝑅  ↾s  𝐴 ) ) )  →  ( 𝑋 ( .r ‘ ( 𝑅  ↾s  𝐴 ) ) 𝑌 )  ∈  ( Base ‘ ( 𝑅  ↾s  𝐴 ) ) ) | 
						
							| 14 | 4 8 10 13 | syl3anc | ⊢ ( ( 𝐴  ∈  ( SubRng ‘ 𝑅 )  ∧  𝑋  ∈  𝐴  ∧  𝑌  ∈  𝐴 )  →  ( 𝑋 ( .r ‘ ( 𝑅  ↾s  𝐴 ) ) 𝑌 )  ∈  ( Base ‘ ( 𝑅  ↾s  𝐴 ) ) ) | 
						
							| 15 | 2 1 | ressmulr | ⊢ ( 𝐴  ∈  ( SubRng ‘ 𝑅 )  →   ·   =  ( .r ‘ ( 𝑅  ↾s  𝐴 ) ) ) | 
						
							| 16 | 15 | 3ad2ant1 | ⊢ ( ( 𝐴  ∈  ( SubRng ‘ 𝑅 )  ∧  𝑋  ∈  𝐴  ∧  𝑌  ∈  𝐴 )  →   ·   =  ( .r ‘ ( 𝑅  ↾s  𝐴 ) ) ) | 
						
							| 17 | 16 | oveqd | ⊢ ( ( 𝐴  ∈  ( SubRng ‘ 𝑅 )  ∧  𝑋  ∈  𝐴  ∧  𝑌  ∈  𝐴 )  →  ( 𝑋  ·  𝑌 )  =  ( 𝑋 ( .r ‘ ( 𝑅  ↾s  𝐴 ) ) 𝑌 ) ) | 
						
							| 18 | 14 17 7 | 3eltr4d | ⊢ ( ( 𝐴  ∈  ( SubRng ‘ 𝑅 )  ∧  𝑋  ∈  𝐴  ∧  𝑌  ∈  𝐴 )  →  ( 𝑋  ·  𝑌 )  ∈  𝐴 ) |