| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							subrngpropd.1 | 
							⊢ ( 𝜑  →  𝐵  =  ( Base ‘ 𝐾 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							subrngpropd.2 | 
							⊢ ( 𝜑  →  𝐵  =  ( Base ‘ 𝐿 ) )  | 
						
						
							| 3 | 
							
								
							 | 
							subrngpropd.3 | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 )  =  ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) )  | 
						
						
							| 4 | 
							
								
							 | 
							subrngpropd.4 | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 )  =  ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) )  | 
						
						
							| 5 | 
							
								1 2 3 4
							 | 
							rngpropd | 
							⊢ ( 𝜑  →  ( 𝐾  ∈  Rng  ↔  𝐿  ∈  Rng ) )  | 
						
						
							| 6 | 
							
								1
							 | 
							ineq2d | 
							⊢ ( 𝜑  →  ( 𝑠  ∩  𝐵 )  =  ( 𝑠  ∩  ( Base ‘ 𝐾 ) ) )  | 
						
						
							| 7 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝐾  ↾s  𝑠 )  =  ( 𝐾  ↾s  𝑠 )  | 
						
						
							| 8 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 )  | 
						
						
							| 9 | 
							
								7 8
							 | 
							ressbas | 
							⊢ ( 𝑠  ∈  V  →  ( 𝑠  ∩  ( Base ‘ 𝐾 ) )  =  ( Base ‘ ( 𝐾  ↾s  𝑠 ) ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							elv | 
							⊢ ( 𝑠  ∩  ( Base ‘ 𝐾 ) )  =  ( Base ‘ ( 𝐾  ↾s  𝑠 ) )  | 
						
						
							| 11 | 
							
								6 10
							 | 
							eqtrdi | 
							⊢ ( 𝜑  →  ( 𝑠  ∩  𝐵 )  =  ( Base ‘ ( 𝐾  ↾s  𝑠 ) ) )  | 
						
						
							| 12 | 
							
								2
							 | 
							ineq2d | 
							⊢ ( 𝜑  →  ( 𝑠  ∩  𝐵 )  =  ( 𝑠  ∩  ( Base ‘ 𝐿 ) ) )  | 
						
						
							| 13 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝐿  ↾s  𝑠 )  =  ( 𝐿  ↾s  𝑠 )  | 
						
						
							| 14 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝐿 )  =  ( Base ‘ 𝐿 )  | 
						
						
							| 15 | 
							
								13 14
							 | 
							ressbas | 
							⊢ ( 𝑠  ∈  V  →  ( 𝑠  ∩  ( Base ‘ 𝐿 ) )  =  ( Base ‘ ( 𝐿  ↾s  𝑠 ) ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							elv | 
							⊢ ( 𝑠  ∩  ( Base ‘ 𝐿 ) )  =  ( Base ‘ ( 𝐿  ↾s  𝑠 ) )  | 
						
						
							| 17 | 
							
								12 16
							 | 
							eqtrdi | 
							⊢ ( 𝜑  →  ( 𝑠  ∩  𝐵 )  =  ( Base ‘ ( 𝐿  ↾s  𝑠 ) ) )  | 
						
						
							| 18 | 
							
								
							 | 
							elinel2 | 
							⊢ ( 𝑥  ∈  ( 𝑠  ∩  𝐵 )  →  𝑥  ∈  𝐵 )  | 
						
						
							| 19 | 
							
								
							 | 
							elinel2 | 
							⊢ ( 𝑦  ∈  ( 𝑠  ∩  𝐵 )  →  𝑦  ∈  𝐵 )  | 
						
						
							| 20 | 
							
								18 19
							 | 
							anim12i | 
							⊢ ( ( 𝑥  ∈  ( 𝑠  ∩  𝐵 )  ∧  𝑦  ∈  ( 𝑠  ∩  𝐵 ) )  →  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  | 
						
						
							| 21 | 
							
								
							 | 
							eqid | 
							⊢ ( +g ‘ 𝐾 )  =  ( +g ‘ 𝐾 )  | 
						
						
							| 22 | 
							
								7 21
							 | 
							ressplusg | 
							⊢ ( 𝑠  ∈  V  →  ( +g ‘ 𝐾 )  =  ( +g ‘ ( 𝐾  ↾s  𝑠 ) ) )  | 
						
						
							| 23 | 
							
								22
							 | 
							elv | 
							⊢ ( +g ‘ 𝐾 )  =  ( +g ‘ ( 𝐾  ↾s  𝑠 ) )  | 
						
						
							| 24 | 
							
								23
							 | 
							oveqi | 
							⊢ ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 )  =  ( 𝑥 ( +g ‘ ( 𝐾  ↾s  𝑠 ) ) 𝑦 )  | 
						
						
							| 25 | 
							
								
							 | 
							eqid | 
							⊢ ( +g ‘ 𝐿 )  =  ( +g ‘ 𝐿 )  | 
						
						
							| 26 | 
							
								13 25
							 | 
							ressplusg | 
							⊢ ( 𝑠  ∈  V  →  ( +g ‘ 𝐿 )  =  ( +g ‘ ( 𝐿  ↾s  𝑠 ) ) )  | 
						
						
							| 27 | 
							
								26
							 | 
							elv | 
							⊢ ( +g ‘ 𝐿 )  =  ( +g ‘ ( 𝐿  ↾s  𝑠 ) )  | 
						
						
							| 28 | 
							
								27
							 | 
							oveqi | 
							⊢ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 )  =  ( 𝑥 ( +g ‘ ( 𝐿  ↾s  𝑠 ) ) 𝑦 )  | 
						
						
							| 29 | 
							
								3 24 28
							 | 
							3eqtr3g | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑥 ( +g ‘ ( 𝐾  ↾s  𝑠 ) ) 𝑦 )  =  ( 𝑥 ( +g ‘ ( 𝐿  ↾s  𝑠 ) ) 𝑦 ) )  | 
						
						
							| 30 | 
							
								20 29
							 | 
							sylan2 | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( 𝑠  ∩  𝐵 )  ∧  𝑦  ∈  ( 𝑠  ∩  𝐵 ) ) )  →  ( 𝑥 ( +g ‘ ( 𝐾  ↾s  𝑠 ) ) 𝑦 )  =  ( 𝑥 ( +g ‘ ( 𝐿  ↾s  𝑠 ) ) 𝑦 ) )  | 
						
						
							| 31 | 
							
								
							 | 
							eqid | 
							⊢ ( .r ‘ 𝐾 )  =  ( .r ‘ 𝐾 )  | 
						
						
							| 32 | 
							
								7 31
							 | 
							ressmulr | 
							⊢ ( 𝑠  ∈  V  →  ( .r ‘ 𝐾 )  =  ( .r ‘ ( 𝐾  ↾s  𝑠 ) ) )  | 
						
						
							| 33 | 
							
								32
							 | 
							elv | 
							⊢ ( .r ‘ 𝐾 )  =  ( .r ‘ ( 𝐾  ↾s  𝑠 ) )  | 
						
						
							| 34 | 
							
								33
							 | 
							oveqi | 
							⊢ ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 )  =  ( 𝑥 ( .r ‘ ( 𝐾  ↾s  𝑠 ) ) 𝑦 )  | 
						
						
							| 35 | 
							
								
							 | 
							eqid | 
							⊢ ( .r ‘ 𝐿 )  =  ( .r ‘ 𝐿 )  | 
						
						
							| 36 | 
							
								13 35
							 | 
							ressmulr | 
							⊢ ( 𝑠  ∈  V  →  ( .r ‘ 𝐿 )  =  ( .r ‘ ( 𝐿  ↾s  𝑠 ) ) )  | 
						
						
							| 37 | 
							
								36
							 | 
							elv | 
							⊢ ( .r ‘ 𝐿 )  =  ( .r ‘ ( 𝐿  ↾s  𝑠 ) )  | 
						
						
							| 38 | 
							
								37
							 | 
							oveqi | 
							⊢ ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 )  =  ( 𝑥 ( .r ‘ ( 𝐿  ↾s  𝑠 ) ) 𝑦 )  | 
						
						
							| 39 | 
							
								4 34 38
							 | 
							3eqtr3g | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑥 ( .r ‘ ( 𝐾  ↾s  𝑠 ) ) 𝑦 )  =  ( 𝑥 ( .r ‘ ( 𝐿  ↾s  𝑠 ) ) 𝑦 ) )  | 
						
						
							| 40 | 
							
								20 39
							 | 
							sylan2 | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( 𝑠  ∩  𝐵 )  ∧  𝑦  ∈  ( 𝑠  ∩  𝐵 ) ) )  →  ( 𝑥 ( .r ‘ ( 𝐾  ↾s  𝑠 ) ) 𝑦 )  =  ( 𝑥 ( .r ‘ ( 𝐿  ↾s  𝑠 ) ) 𝑦 ) )  | 
						
						
							| 41 | 
							
								11 17 30 40
							 | 
							rngpropd | 
							⊢ ( 𝜑  →  ( ( 𝐾  ↾s  𝑠 )  ∈  Rng  ↔  ( 𝐿  ↾s  𝑠 )  ∈  Rng ) )  | 
						
						
							| 42 | 
							
								1 2
							 | 
							eqtr3d | 
							⊢ ( 𝜑  →  ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐿 ) )  | 
						
						
							| 43 | 
							
								42
							 | 
							sseq2d | 
							⊢ ( 𝜑  →  ( 𝑠  ⊆  ( Base ‘ 𝐾 )  ↔  𝑠  ⊆  ( Base ‘ 𝐿 ) ) )  | 
						
						
							| 44 | 
							
								5 41 43
							 | 
							3anbi123d | 
							⊢ ( 𝜑  →  ( ( 𝐾  ∈  Rng  ∧  ( 𝐾  ↾s  𝑠 )  ∈  Rng  ∧  𝑠  ⊆  ( Base ‘ 𝐾 ) )  ↔  ( 𝐿  ∈  Rng  ∧  ( 𝐿  ↾s  𝑠 )  ∈  Rng  ∧  𝑠  ⊆  ( Base ‘ 𝐿 ) ) ) )  | 
						
						
							| 45 | 
							
								8
							 | 
							issubrng | 
							⊢ ( 𝑠  ∈  ( SubRng ‘ 𝐾 )  ↔  ( 𝐾  ∈  Rng  ∧  ( 𝐾  ↾s  𝑠 )  ∈  Rng  ∧  𝑠  ⊆  ( Base ‘ 𝐾 ) ) )  | 
						
						
							| 46 | 
							
								14
							 | 
							issubrng | 
							⊢ ( 𝑠  ∈  ( SubRng ‘ 𝐿 )  ↔  ( 𝐿  ∈  Rng  ∧  ( 𝐿  ↾s  𝑠 )  ∈  Rng  ∧  𝑠  ⊆  ( Base ‘ 𝐿 ) ) )  | 
						
						
							| 47 | 
							
								44 45 46
							 | 
							3bitr4g | 
							⊢ ( 𝜑  →  ( 𝑠  ∈  ( SubRng ‘ 𝐾 )  ↔  𝑠  ∈  ( SubRng ‘ 𝐿 ) ) )  | 
						
						
							| 48 | 
							
								47
							 | 
							eqrdv | 
							⊢ ( 𝜑  →  ( SubRng ‘ 𝐾 )  =  ( SubRng ‘ 𝐿 ) )  |