Metamath Proof Explorer


Theorem subrngringnsg

Description: A subring is a normal subgroup. (Contributed by AV, 25-Feb-2025)

Ref Expression
Assertion subrngringnsg ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) → 𝐴 ∈ ( NrmSGrp ‘ 𝑅 ) )

Proof

Step Hyp Ref Expression
1 subrngsubg ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) → 𝐴 ∈ ( SubGrp ‘ 𝑅 ) )
2 subrngrcl ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) → 𝑅 ∈ Rng )
3 rngabl ( 𝑅 ∈ Rng → 𝑅 ∈ Abel )
4 2 3 syl ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) → 𝑅 ∈ Abel )
5 4 3anim1i ( ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑅 ∈ Abel ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) )
6 5 3expb ( ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑅 ∈ Abel ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) )
7 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
8 eqid ( +g𝑅 ) = ( +g𝑅 )
9 7 8 ablcom ( ( 𝑅 ∈ Abel ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑥 ( +g𝑅 ) 𝑦 ) = ( 𝑦 ( +g𝑅 ) 𝑥 ) )
10 6 9 syl ( ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑥 ( +g𝑅 ) 𝑦 ) = ( 𝑦 ( +g𝑅 ) 𝑥 ) )
11 10 eleq1d ( ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝑥 ( +g𝑅 ) 𝑦 ) ∈ 𝐴 ↔ ( 𝑦 ( +g𝑅 ) 𝑥 ) ∈ 𝐴 ) )
12 11 biimpd ( ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝑥 ( +g𝑅 ) 𝑦 ) ∈ 𝐴 → ( 𝑦 ( +g𝑅 ) 𝑥 ) ∈ 𝐴 ) )
13 12 ralrimivva ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) → ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( ( 𝑥 ( +g𝑅 ) 𝑦 ) ∈ 𝐴 → ( 𝑦 ( +g𝑅 ) 𝑥 ) ∈ 𝐴 ) )
14 7 8 isnsg2 ( 𝐴 ∈ ( NrmSGrp ‘ 𝑅 ) ↔ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( ( 𝑥 ( +g𝑅 ) 𝑦 ) ∈ 𝐴 → ( 𝑦 ( +g𝑅 ) 𝑥 ) ∈ 𝐴 ) ) )
15 1 13 14 sylanbrc ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) → 𝐴 ∈ ( NrmSGrp ‘ 𝑅 ) )