| Step | Hyp | Ref | Expression | 
						
							| 1 |  | subrngsubg | ⊢ ( 𝐴  ∈  ( SubRng ‘ 𝑅 )  →  𝐴  ∈  ( SubGrp ‘ 𝑅 ) ) | 
						
							| 2 |  | subrngrcl | ⊢ ( 𝐴  ∈  ( SubRng ‘ 𝑅 )  →  𝑅  ∈  Rng ) | 
						
							| 3 |  | rngabl | ⊢ ( 𝑅  ∈  Rng  →  𝑅  ∈  Abel ) | 
						
							| 4 | 2 3 | syl | ⊢ ( 𝐴  ∈  ( SubRng ‘ 𝑅 )  →  𝑅  ∈  Abel ) | 
						
							| 5 | 4 | 3anim1i | ⊢ ( ( 𝐴  ∈  ( SubRng ‘ 𝑅 )  ∧  𝑥  ∈  ( Base ‘ 𝑅 )  ∧  𝑦  ∈  ( Base ‘ 𝑅 ) )  →  ( 𝑅  ∈  Abel  ∧  𝑥  ∈  ( Base ‘ 𝑅 )  ∧  𝑦  ∈  ( Base ‘ 𝑅 ) ) ) | 
						
							| 6 | 5 | 3expb | ⊢ ( ( 𝐴  ∈  ( SubRng ‘ 𝑅 )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑅 )  ∧  𝑦  ∈  ( Base ‘ 𝑅 ) ) )  →  ( 𝑅  ∈  Abel  ∧  𝑥  ∈  ( Base ‘ 𝑅 )  ∧  𝑦  ∈  ( Base ‘ 𝑅 ) ) ) | 
						
							| 7 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 8 |  | eqid | ⊢ ( +g ‘ 𝑅 )  =  ( +g ‘ 𝑅 ) | 
						
							| 9 | 7 8 | ablcom | ⊢ ( ( 𝑅  ∈  Abel  ∧  𝑥  ∈  ( Base ‘ 𝑅 )  ∧  𝑦  ∈  ( Base ‘ 𝑅 ) )  →  ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 )  =  ( 𝑦 ( +g ‘ 𝑅 ) 𝑥 ) ) | 
						
							| 10 | 6 9 | syl | ⊢ ( ( 𝐴  ∈  ( SubRng ‘ 𝑅 )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑅 )  ∧  𝑦  ∈  ( Base ‘ 𝑅 ) ) )  →  ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 )  =  ( 𝑦 ( +g ‘ 𝑅 ) 𝑥 ) ) | 
						
							| 11 | 10 | eleq1d | ⊢ ( ( 𝐴  ∈  ( SubRng ‘ 𝑅 )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑅 )  ∧  𝑦  ∈  ( Base ‘ 𝑅 ) ) )  →  ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 )  ∈  𝐴  ↔  ( 𝑦 ( +g ‘ 𝑅 ) 𝑥 )  ∈  𝐴 ) ) | 
						
							| 12 | 11 | biimpd | ⊢ ( ( 𝐴  ∈  ( SubRng ‘ 𝑅 )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑅 )  ∧  𝑦  ∈  ( Base ‘ 𝑅 ) ) )  →  ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 )  ∈  𝐴  →  ( 𝑦 ( +g ‘ 𝑅 ) 𝑥 )  ∈  𝐴 ) ) | 
						
							| 13 | 12 | ralrimivva | ⊢ ( 𝐴  ∈  ( SubRng ‘ 𝑅 )  →  ∀ 𝑥  ∈  ( Base ‘ 𝑅 ) ∀ 𝑦  ∈  ( Base ‘ 𝑅 ) ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 )  ∈  𝐴  →  ( 𝑦 ( +g ‘ 𝑅 ) 𝑥 )  ∈  𝐴 ) ) | 
						
							| 14 | 7 8 | isnsg2 | ⊢ ( 𝐴  ∈  ( NrmSGrp ‘ 𝑅 )  ↔  ( 𝐴  ∈  ( SubGrp ‘ 𝑅 )  ∧  ∀ 𝑥  ∈  ( Base ‘ 𝑅 ) ∀ 𝑦  ∈  ( Base ‘ 𝑅 ) ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 )  ∈  𝐴  →  ( 𝑦 ( +g ‘ 𝑅 ) 𝑥 )  ∈  𝐴 ) ) ) | 
						
							| 15 | 1 13 14 | sylanbrc | ⊢ ( 𝐴  ∈  ( SubRng ‘ 𝑅 )  →  𝐴  ∈  ( NrmSGrp ‘ 𝑅 ) ) |