Description: A subring is a subset. (Contributed by AV, 14-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Hypothesis | subrngss.1 | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
Assertion | subrngss | ⊢ ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) → 𝐴 ⊆ 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subrngss.1 | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
2 | 1 | issubrng | ⊢ ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) ↔ ( 𝑅 ∈ Rng ∧ ( 𝑅 ↾s 𝐴 ) ∈ Rng ∧ 𝐴 ⊆ 𝐵 ) ) |
3 | 2 | simp3bi | ⊢ ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) → 𝐴 ⊆ 𝐵 ) |