Description: A subring is a subset. (Contributed by AV, 14-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | subrngss.1 | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| Assertion | subrngss | ⊢ ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) → 𝐴 ⊆ 𝐵 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | subrngss.1 | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | 1 | issubrng | ⊢ ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) ↔ ( 𝑅 ∈ Rng ∧ ( 𝑅 ↾s 𝐴 ) ∈ Rng ∧ 𝐴 ⊆ 𝐵 ) ) | 
| 3 | 2 | simp3bi | ⊢ ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) → 𝐴 ⊆ 𝐵 ) |