| Step | Hyp | Ref | Expression | 
						
							| 1 |  | subrngrcl | ⊢ ( 𝐴  ∈  ( SubRng ‘ 𝑅 )  →  𝑅  ∈  Rng ) | 
						
							| 2 |  | rnggrp | ⊢ ( 𝑅  ∈  Rng  →  𝑅  ∈  Grp ) | 
						
							| 3 | 1 2 | syl | ⊢ ( 𝐴  ∈  ( SubRng ‘ 𝑅 )  →  𝑅  ∈  Grp ) | 
						
							| 4 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 5 | 4 | subrngss | ⊢ ( 𝐴  ∈  ( SubRng ‘ 𝑅 )  →  𝐴  ⊆  ( Base ‘ 𝑅 ) ) | 
						
							| 6 |  | eqid | ⊢ ( 𝑅  ↾s  𝐴 )  =  ( 𝑅  ↾s  𝐴 ) | 
						
							| 7 | 6 | subrngrng | ⊢ ( 𝐴  ∈  ( SubRng ‘ 𝑅 )  →  ( 𝑅  ↾s  𝐴 )  ∈  Rng ) | 
						
							| 8 |  | rnggrp | ⊢ ( ( 𝑅  ↾s  𝐴 )  ∈  Rng  →  ( 𝑅  ↾s  𝐴 )  ∈  Grp ) | 
						
							| 9 | 7 8 | syl | ⊢ ( 𝐴  ∈  ( SubRng ‘ 𝑅 )  →  ( 𝑅  ↾s  𝐴 )  ∈  Grp ) | 
						
							| 10 | 4 | issubg | ⊢ ( 𝐴  ∈  ( SubGrp ‘ 𝑅 )  ↔  ( 𝑅  ∈  Grp  ∧  𝐴  ⊆  ( Base ‘ 𝑅 )  ∧  ( 𝑅  ↾s  𝐴 )  ∈  Grp ) ) | 
						
							| 11 | 3 5 9 10 | syl3anbrc | ⊢ ( 𝐴  ∈  ( SubRng ‘ 𝑅 )  →  𝐴  ∈  ( SubGrp ‘ 𝑅 ) ) |