Description: Closure law for surreal subtraction. (Contributed by Scott Fenton, 5-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | subscld.1 | ⊢ ( 𝜑 → 𝐴 ∈ No ) | |
| subscld.2 | ⊢ ( 𝜑 → 𝐵 ∈ No ) | ||
| Assertion | subscld | ⊢ ( 𝜑 → ( 𝐴 -s 𝐵 ) ∈ No ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subscld.1 | ⊢ ( 𝜑 → 𝐴 ∈ No ) | |
| 2 | subscld.2 | ⊢ ( 𝜑 → 𝐵 ∈ No ) | |
| 3 | subscl | ⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝐴 -s 𝐵 ) ∈ No ) | |
| 4 | 1 2 3 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 -s 𝐵 ) ∈ No ) |