Description: Closure law for surreal subtraction. (Contributed by Scott Fenton, 5-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | subscld.1 | ⊢ ( 𝜑 → 𝐴 ∈ No ) | |
subscld.2 | ⊢ ( 𝜑 → 𝐵 ∈ No ) | ||
Assertion | subscld | ⊢ ( 𝜑 → ( 𝐴 -s 𝐵 ) ∈ No ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subscld.1 | ⊢ ( 𝜑 → 𝐴 ∈ No ) | |
2 | subscld.2 | ⊢ ( 𝜑 → 𝐵 ∈ No ) | |
3 | subscl | ⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝐴 -s 𝐵 ) ∈ No ) | |
4 | 1 2 3 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 -s 𝐵 ) ∈ No ) |