Metamath Proof Explorer


Theorem subscld

Description: Closure law for surreal subtraction. (Contributed by Scott Fenton, 5-Feb-2025)

Ref Expression
Hypotheses subscld.1 ( 𝜑𝐴 No )
subscld.2 ( 𝜑𝐵 No )
Assertion subscld ( 𝜑 → ( 𝐴 -s 𝐵 ) ∈ No )

Proof

Step Hyp Ref Expression
1 subscld.1 ( 𝜑𝐴 No )
2 subscld.2 ( 𝜑𝐵 No )
3 subscl ( ( 𝐴 No 𝐵 No ) → ( 𝐴 -s 𝐵 ) ∈ No )
4 1 2 3 syl2anc ( 𝜑 → ( 𝐴 -s 𝐵 ) ∈ No )