Step |
Hyp |
Ref |
Expression |
1 |
|
addsdid.1 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
2 |
|
addsdid.2 |
⊢ ( 𝜑 → 𝐵 ∈ No ) |
3 |
|
addsdid.3 |
⊢ ( 𝜑 → 𝐶 ∈ No ) |
4 |
2 3
|
subscld |
⊢ ( 𝜑 → ( 𝐵 -s 𝐶 ) ∈ No ) |
5 |
1 3 4
|
addsdid |
⊢ ( 𝜑 → ( 𝐴 ·s ( 𝐶 +s ( 𝐵 -s 𝐶 ) ) ) = ( ( 𝐴 ·s 𝐶 ) +s ( 𝐴 ·s ( 𝐵 -s 𝐶 ) ) ) ) |
6 |
|
pncan3s |
⊢ ( ( 𝐶 ∈ No ∧ 𝐵 ∈ No ) → ( 𝐶 +s ( 𝐵 -s 𝐶 ) ) = 𝐵 ) |
7 |
3 2 6
|
syl2anc |
⊢ ( 𝜑 → ( 𝐶 +s ( 𝐵 -s 𝐶 ) ) = 𝐵 ) |
8 |
7
|
oveq2d |
⊢ ( 𝜑 → ( 𝐴 ·s ( 𝐶 +s ( 𝐵 -s 𝐶 ) ) ) = ( 𝐴 ·s 𝐵 ) ) |
9 |
5 8
|
eqtr3d |
⊢ ( 𝜑 → ( ( 𝐴 ·s 𝐶 ) +s ( 𝐴 ·s ( 𝐵 -s 𝐶 ) ) ) = ( 𝐴 ·s 𝐵 ) ) |
10 |
1 2
|
mulscld |
⊢ ( 𝜑 → ( 𝐴 ·s 𝐵 ) ∈ No ) |
11 |
1 3
|
mulscld |
⊢ ( 𝜑 → ( 𝐴 ·s 𝐶 ) ∈ No ) |
12 |
1 4
|
mulscld |
⊢ ( 𝜑 → ( 𝐴 ·s ( 𝐵 -s 𝐶 ) ) ∈ No ) |
13 |
10 11 12
|
subaddsd |
⊢ ( 𝜑 → ( ( ( 𝐴 ·s 𝐵 ) -s ( 𝐴 ·s 𝐶 ) ) = ( 𝐴 ·s ( 𝐵 -s 𝐶 ) ) ↔ ( ( 𝐴 ·s 𝐶 ) +s ( 𝐴 ·s ( 𝐵 -s 𝐶 ) ) ) = ( 𝐴 ·s 𝐵 ) ) ) |
14 |
9 13
|
mpbird |
⊢ ( 𝜑 → ( ( 𝐴 ·s 𝐵 ) -s ( 𝐴 ·s 𝐶 ) ) = ( 𝐴 ·s ( 𝐵 -s 𝐶 ) ) ) |
15 |
14
|
eqcomd |
⊢ ( 𝜑 → ( 𝐴 ·s ( 𝐵 -s 𝐶 ) ) = ( ( 𝐴 ·s 𝐵 ) -s ( 𝐴 ·s 𝐶 ) ) ) |