Metamath Proof Explorer


Theorem subsdid

Description: Distribution of surreal multiplication over subtraction. (Contributed by Scott Fenton, 9-Mar-2025)

Ref Expression
Hypotheses addsdid.1 ( 𝜑𝐴 No )
addsdid.2 ( 𝜑𝐵 No )
addsdid.3 ( 𝜑𝐶 No )
Assertion subsdid ( 𝜑 → ( 𝐴 ·s ( 𝐵 -s 𝐶 ) ) = ( ( 𝐴 ·s 𝐵 ) -s ( 𝐴 ·s 𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 addsdid.1 ( 𝜑𝐴 No )
2 addsdid.2 ( 𝜑𝐵 No )
3 addsdid.3 ( 𝜑𝐶 No )
4 2 3 subscld ( 𝜑 → ( 𝐵 -s 𝐶 ) ∈ No )
5 1 3 4 addsdid ( 𝜑 → ( 𝐴 ·s ( 𝐶 +s ( 𝐵 -s 𝐶 ) ) ) = ( ( 𝐴 ·s 𝐶 ) +s ( 𝐴 ·s ( 𝐵 -s 𝐶 ) ) ) )
6 pncan3s ( ( 𝐶 No 𝐵 No ) → ( 𝐶 +s ( 𝐵 -s 𝐶 ) ) = 𝐵 )
7 3 2 6 syl2anc ( 𝜑 → ( 𝐶 +s ( 𝐵 -s 𝐶 ) ) = 𝐵 )
8 7 oveq2d ( 𝜑 → ( 𝐴 ·s ( 𝐶 +s ( 𝐵 -s 𝐶 ) ) ) = ( 𝐴 ·s 𝐵 ) )
9 5 8 eqtr3d ( 𝜑 → ( ( 𝐴 ·s 𝐶 ) +s ( 𝐴 ·s ( 𝐵 -s 𝐶 ) ) ) = ( 𝐴 ·s 𝐵 ) )
10 1 2 mulscld ( 𝜑 → ( 𝐴 ·s 𝐵 ) ∈ No )
11 1 3 mulscld ( 𝜑 → ( 𝐴 ·s 𝐶 ) ∈ No )
12 1 4 mulscld ( 𝜑 → ( 𝐴 ·s ( 𝐵 -s 𝐶 ) ) ∈ No )
13 10 11 12 subaddsd ( 𝜑 → ( ( ( 𝐴 ·s 𝐵 ) -s ( 𝐴 ·s 𝐶 ) ) = ( 𝐴 ·s ( 𝐵 -s 𝐶 ) ) ↔ ( ( 𝐴 ·s 𝐶 ) +s ( 𝐴 ·s ( 𝐵 -s 𝐶 ) ) ) = ( 𝐴 ·s 𝐵 ) ) )
14 9 13 mpbird ( 𝜑 → ( ( 𝐴 ·s 𝐵 ) -s ( 𝐴 ·s 𝐶 ) ) = ( 𝐴 ·s ( 𝐵 -s 𝐶 ) ) )
15 14 eqcomd ( 𝜑 → ( 𝐴 ·s ( 𝐵 -s 𝐶 ) ) = ( ( 𝐴 ·s 𝐵 ) -s ( 𝐴 ·s 𝐶 ) ) )