| Step |
Hyp |
Ref |
Expression |
| 1 |
|
addsdid.1 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
| 2 |
|
addsdid.2 |
⊢ ( 𝜑 → 𝐵 ∈ No ) |
| 3 |
|
addsdid.3 |
⊢ ( 𝜑 → 𝐶 ∈ No ) |
| 4 |
2 3
|
subscld |
⊢ ( 𝜑 → ( 𝐵 -s 𝐶 ) ∈ No ) |
| 5 |
1 3 4
|
addsdid |
⊢ ( 𝜑 → ( 𝐴 ·s ( 𝐶 +s ( 𝐵 -s 𝐶 ) ) ) = ( ( 𝐴 ·s 𝐶 ) +s ( 𝐴 ·s ( 𝐵 -s 𝐶 ) ) ) ) |
| 6 |
|
pncan3s |
⊢ ( ( 𝐶 ∈ No ∧ 𝐵 ∈ No ) → ( 𝐶 +s ( 𝐵 -s 𝐶 ) ) = 𝐵 ) |
| 7 |
3 2 6
|
syl2anc |
⊢ ( 𝜑 → ( 𝐶 +s ( 𝐵 -s 𝐶 ) ) = 𝐵 ) |
| 8 |
7
|
oveq2d |
⊢ ( 𝜑 → ( 𝐴 ·s ( 𝐶 +s ( 𝐵 -s 𝐶 ) ) ) = ( 𝐴 ·s 𝐵 ) ) |
| 9 |
5 8
|
eqtr3d |
⊢ ( 𝜑 → ( ( 𝐴 ·s 𝐶 ) +s ( 𝐴 ·s ( 𝐵 -s 𝐶 ) ) ) = ( 𝐴 ·s 𝐵 ) ) |
| 10 |
1 2
|
mulscld |
⊢ ( 𝜑 → ( 𝐴 ·s 𝐵 ) ∈ No ) |
| 11 |
1 3
|
mulscld |
⊢ ( 𝜑 → ( 𝐴 ·s 𝐶 ) ∈ No ) |
| 12 |
1 4
|
mulscld |
⊢ ( 𝜑 → ( 𝐴 ·s ( 𝐵 -s 𝐶 ) ) ∈ No ) |
| 13 |
10 11 12
|
subaddsd |
⊢ ( 𝜑 → ( ( ( 𝐴 ·s 𝐵 ) -s ( 𝐴 ·s 𝐶 ) ) = ( 𝐴 ·s ( 𝐵 -s 𝐶 ) ) ↔ ( ( 𝐴 ·s 𝐶 ) +s ( 𝐴 ·s ( 𝐵 -s 𝐶 ) ) ) = ( 𝐴 ·s 𝐵 ) ) ) |
| 14 |
9 13
|
mpbird |
⊢ ( 𝜑 → ( ( 𝐴 ·s 𝐵 ) -s ( 𝐴 ·s 𝐶 ) ) = ( 𝐴 ·s ( 𝐵 -s 𝐶 ) ) ) |
| 15 |
14
|
eqcomd |
⊢ ( 𝜑 → ( 𝐴 ·s ( 𝐵 -s 𝐶 ) ) = ( ( 𝐴 ·s 𝐵 ) -s ( 𝐴 ·s 𝐶 ) ) ) |