Step |
Hyp |
Ref |
Expression |
1 |
|
addsdid.1 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
2 |
|
addsdid.2 |
⊢ ( 𝜑 → 𝐵 ∈ No ) |
3 |
|
addsdid.3 |
⊢ ( 𝜑 → 𝐶 ∈ No ) |
4 |
3 1 2
|
subsdid |
⊢ ( 𝜑 → ( 𝐶 ·s ( 𝐴 -s 𝐵 ) ) = ( ( 𝐶 ·s 𝐴 ) -s ( 𝐶 ·s 𝐵 ) ) ) |
5 |
1 2
|
subscld |
⊢ ( 𝜑 → ( 𝐴 -s 𝐵 ) ∈ No ) |
6 |
5 3
|
mulscomd |
⊢ ( 𝜑 → ( ( 𝐴 -s 𝐵 ) ·s 𝐶 ) = ( 𝐶 ·s ( 𝐴 -s 𝐵 ) ) ) |
7 |
1 3
|
mulscomd |
⊢ ( 𝜑 → ( 𝐴 ·s 𝐶 ) = ( 𝐶 ·s 𝐴 ) ) |
8 |
2 3
|
mulscomd |
⊢ ( 𝜑 → ( 𝐵 ·s 𝐶 ) = ( 𝐶 ·s 𝐵 ) ) |
9 |
7 8
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝐴 ·s 𝐶 ) -s ( 𝐵 ·s 𝐶 ) ) = ( ( 𝐶 ·s 𝐴 ) -s ( 𝐶 ·s 𝐵 ) ) ) |
10 |
4 6 9
|
3eqtr4d |
⊢ ( 𝜑 → ( ( 𝐴 -s 𝐵 ) ·s 𝐶 ) = ( ( 𝐴 ·s 𝐶 ) -s ( 𝐵 ·s 𝐶 ) ) ) |