Metamath Proof Explorer


Theorem subsdird

Description: Distribution of surreal multiplication over subtraction. (Contributed by Scott Fenton, 9-Mar-2025)

Ref Expression
Hypotheses addsdid.1 ( 𝜑𝐴 No )
addsdid.2 ( 𝜑𝐵 No )
addsdid.3 ( 𝜑𝐶 No )
Assertion subsdird ( 𝜑 → ( ( 𝐴 -s 𝐵 ) ·s 𝐶 ) = ( ( 𝐴 ·s 𝐶 ) -s ( 𝐵 ·s 𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 addsdid.1 ( 𝜑𝐴 No )
2 addsdid.2 ( 𝜑𝐵 No )
3 addsdid.3 ( 𝜑𝐶 No )
4 3 1 2 subsdid ( 𝜑 → ( 𝐶 ·s ( 𝐴 -s 𝐵 ) ) = ( ( 𝐶 ·s 𝐴 ) -s ( 𝐶 ·s 𝐵 ) ) )
5 1 2 subscld ( 𝜑 → ( 𝐴 -s 𝐵 ) ∈ No )
6 5 3 mulscomd ( 𝜑 → ( ( 𝐴 -s 𝐵 ) ·s 𝐶 ) = ( 𝐶 ·s ( 𝐴 -s 𝐵 ) ) )
7 1 3 mulscomd ( 𝜑 → ( 𝐴 ·s 𝐶 ) = ( 𝐶 ·s 𝐴 ) )
8 2 3 mulscomd ( 𝜑 → ( 𝐵 ·s 𝐶 ) = ( 𝐶 ·s 𝐵 ) )
9 7 8 oveq12d ( 𝜑 → ( ( 𝐴 ·s 𝐶 ) -s ( 𝐵 ·s 𝐶 ) ) = ( ( 𝐶 ·s 𝐴 ) -s ( 𝐶 ·s 𝐵 ) ) )
10 4 6 9 3eqtr4d ( 𝜑 → ( ( 𝐴 -s 𝐵 ) ·s 𝐶 ) = ( ( 𝐴 ·s 𝐶 ) -s ( 𝐵 ·s 𝐶 ) ) )