Metamath Proof Explorer


Theorem subsfn

Description: Surreal subtraction is a function over pairs of surreals. (Contributed by Scott Fenton, 22-Jan-2025)

Ref Expression
Assertion subsfn -s Fn ( No × No )

Proof

Step Hyp Ref Expression
1 df-subs -s = ( 𝑥 No , 𝑦 No ↦ ( 𝑥 +s ( -us𝑦 ) ) )
2 ovex ( 𝑥 +s ( -us𝑦 ) ) ∈ V
3 1 2 fnmpoi -s Fn ( No × No )