Step |
Hyp |
Ref |
Expression |
1 |
|
subsge0d.1 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
2 |
|
subsge0d.2 |
⊢ ( 𝜑 → 𝐵 ∈ No ) |
3 |
|
0sno |
⊢ 0s ∈ No |
4 |
3
|
a1i |
⊢ ( 𝜑 → 0s ∈ No ) |
5 |
1 2
|
subscld |
⊢ ( 𝜑 → ( 𝐴 -s 𝐵 ) ∈ No ) |
6 |
4 5 2
|
sleadd1d |
⊢ ( 𝜑 → ( 0s ≤s ( 𝐴 -s 𝐵 ) ↔ ( 0s +s 𝐵 ) ≤s ( ( 𝐴 -s 𝐵 ) +s 𝐵 ) ) ) |
7 |
|
addslid |
⊢ ( 𝐵 ∈ No → ( 0s +s 𝐵 ) = 𝐵 ) |
8 |
2 7
|
syl |
⊢ ( 𝜑 → ( 0s +s 𝐵 ) = 𝐵 ) |
9 |
|
npcans |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( ( 𝐴 -s 𝐵 ) +s 𝐵 ) = 𝐴 ) |
10 |
1 2 9
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐴 -s 𝐵 ) +s 𝐵 ) = 𝐴 ) |
11 |
8 10
|
breq12d |
⊢ ( 𝜑 → ( ( 0s +s 𝐵 ) ≤s ( ( 𝐴 -s 𝐵 ) +s 𝐵 ) ↔ 𝐵 ≤s 𝐴 ) ) |
12 |
6 11
|
bitrd |
⊢ ( 𝜑 → ( 0s ≤s ( 𝐴 -s 𝐵 ) ↔ 𝐵 ≤s 𝐴 ) ) |