Description: Subtraction of a surreal from itself. (Contributed by Scott Fenton, 3-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | subsid | ⊢ ( 𝐴 ∈ No → ( 𝐴 -s 𝐴 ) = 0s ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subsval | ⊢ ( ( 𝐴 ∈ No ∧ 𝐴 ∈ No ) → ( 𝐴 -s 𝐴 ) = ( 𝐴 +s ( -us ‘ 𝐴 ) ) ) | |
2 | 1 | anidms | ⊢ ( 𝐴 ∈ No → ( 𝐴 -s 𝐴 ) = ( 𝐴 +s ( -us ‘ 𝐴 ) ) ) |
3 | negsid | ⊢ ( 𝐴 ∈ No → ( 𝐴 +s ( -us ‘ 𝐴 ) ) = 0s ) | |
4 | 2 3 | eqtrd | ⊢ ( 𝐴 ∈ No → ( 𝐴 -s 𝐴 ) = 0s ) |