Metamath Proof Explorer


Theorem subsid

Description: Subtraction of a surreal from itself. (Contributed by Scott Fenton, 3-Feb-2025)

Ref Expression
Assertion subsid ( 𝐴 No → ( 𝐴 -s 𝐴 ) = 0s )

Proof

Step Hyp Ref Expression
1 subsval ( ( 𝐴 No 𝐴 No ) → ( 𝐴 -s 𝐴 ) = ( 𝐴 +s ( -us𝐴 ) ) )
2 1 anidms ( 𝐴 No → ( 𝐴 -s 𝐴 ) = ( 𝐴 +s ( -us𝐴 ) ) )
3 negsid ( 𝐴 No → ( 𝐴 +s ( -us𝐴 ) ) = 0s )
4 2 3 eqtrd ( 𝐴 No → ( 𝐴 -s 𝐴 ) = 0s )