Step |
Hyp |
Ref |
Expression |
1 |
|
halfaddsubcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( 𝐴 + 𝐵 ) / 2 ) ∈ ℂ ∧ ( ( 𝐴 − 𝐵 ) / 2 ) ∈ ℂ ) ) |
2 |
|
coscl |
⊢ ( ( ( 𝐴 + 𝐵 ) / 2 ) ∈ ℂ → ( cos ‘ ( ( 𝐴 + 𝐵 ) / 2 ) ) ∈ ℂ ) |
3 |
|
sincl |
⊢ ( ( ( 𝐴 − 𝐵 ) / 2 ) ∈ ℂ → ( sin ‘ ( ( 𝐴 − 𝐵 ) / 2 ) ) ∈ ℂ ) |
4 |
|
mulcl |
⊢ ( ( ( cos ‘ ( ( 𝐴 + 𝐵 ) / 2 ) ) ∈ ℂ ∧ ( sin ‘ ( ( 𝐴 − 𝐵 ) / 2 ) ) ∈ ℂ ) → ( ( cos ‘ ( ( 𝐴 + 𝐵 ) / 2 ) ) · ( sin ‘ ( ( 𝐴 − 𝐵 ) / 2 ) ) ) ∈ ℂ ) |
5 |
2 3 4
|
syl2an |
⊢ ( ( ( ( 𝐴 + 𝐵 ) / 2 ) ∈ ℂ ∧ ( ( 𝐴 − 𝐵 ) / 2 ) ∈ ℂ ) → ( ( cos ‘ ( ( 𝐴 + 𝐵 ) / 2 ) ) · ( sin ‘ ( ( 𝐴 − 𝐵 ) / 2 ) ) ) ∈ ℂ ) |
6 |
1 5
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( cos ‘ ( ( 𝐴 + 𝐵 ) / 2 ) ) · ( sin ‘ ( ( 𝐴 − 𝐵 ) / 2 ) ) ) ∈ ℂ ) |
7 |
6
|
2timesd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 2 · ( ( cos ‘ ( ( 𝐴 + 𝐵 ) / 2 ) ) · ( sin ‘ ( ( 𝐴 − 𝐵 ) / 2 ) ) ) ) = ( ( ( cos ‘ ( ( 𝐴 + 𝐵 ) / 2 ) ) · ( sin ‘ ( ( 𝐴 − 𝐵 ) / 2 ) ) ) + ( ( cos ‘ ( ( 𝐴 + 𝐵 ) / 2 ) ) · ( sin ‘ ( ( 𝐴 − 𝐵 ) / 2 ) ) ) ) ) |
8 |
|
sinadd |
⊢ ( ( ( ( 𝐴 + 𝐵 ) / 2 ) ∈ ℂ ∧ ( ( 𝐴 − 𝐵 ) / 2 ) ∈ ℂ ) → ( sin ‘ ( ( ( 𝐴 + 𝐵 ) / 2 ) + ( ( 𝐴 − 𝐵 ) / 2 ) ) ) = ( ( ( sin ‘ ( ( 𝐴 + 𝐵 ) / 2 ) ) · ( cos ‘ ( ( 𝐴 − 𝐵 ) / 2 ) ) ) + ( ( cos ‘ ( ( 𝐴 + 𝐵 ) / 2 ) ) · ( sin ‘ ( ( 𝐴 − 𝐵 ) / 2 ) ) ) ) ) |
9 |
|
sinsub |
⊢ ( ( ( ( 𝐴 + 𝐵 ) / 2 ) ∈ ℂ ∧ ( ( 𝐴 − 𝐵 ) / 2 ) ∈ ℂ ) → ( sin ‘ ( ( ( 𝐴 + 𝐵 ) / 2 ) − ( ( 𝐴 − 𝐵 ) / 2 ) ) ) = ( ( ( sin ‘ ( ( 𝐴 + 𝐵 ) / 2 ) ) · ( cos ‘ ( ( 𝐴 − 𝐵 ) / 2 ) ) ) − ( ( cos ‘ ( ( 𝐴 + 𝐵 ) / 2 ) ) · ( sin ‘ ( ( 𝐴 − 𝐵 ) / 2 ) ) ) ) ) |
10 |
8 9
|
oveq12d |
⊢ ( ( ( ( 𝐴 + 𝐵 ) / 2 ) ∈ ℂ ∧ ( ( 𝐴 − 𝐵 ) / 2 ) ∈ ℂ ) → ( ( sin ‘ ( ( ( 𝐴 + 𝐵 ) / 2 ) + ( ( 𝐴 − 𝐵 ) / 2 ) ) ) − ( sin ‘ ( ( ( 𝐴 + 𝐵 ) / 2 ) − ( ( 𝐴 − 𝐵 ) / 2 ) ) ) ) = ( ( ( ( sin ‘ ( ( 𝐴 + 𝐵 ) / 2 ) ) · ( cos ‘ ( ( 𝐴 − 𝐵 ) / 2 ) ) ) + ( ( cos ‘ ( ( 𝐴 + 𝐵 ) / 2 ) ) · ( sin ‘ ( ( 𝐴 − 𝐵 ) / 2 ) ) ) ) − ( ( ( sin ‘ ( ( 𝐴 + 𝐵 ) / 2 ) ) · ( cos ‘ ( ( 𝐴 − 𝐵 ) / 2 ) ) ) − ( ( cos ‘ ( ( 𝐴 + 𝐵 ) / 2 ) ) · ( sin ‘ ( ( 𝐴 − 𝐵 ) / 2 ) ) ) ) ) ) |
11 |
1 10
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( sin ‘ ( ( ( 𝐴 + 𝐵 ) / 2 ) + ( ( 𝐴 − 𝐵 ) / 2 ) ) ) − ( sin ‘ ( ( ( 𝐴 + 𝐵 ) / 2 ) − ( ( 𝐴 − 𝐵 ) / 2 ) ) ) ) = ( ( ( ( sin ‘ ( ( 𝐴 + 𝐵 ) / 2 ) ) · ( cos ‘ ( ( 𝐴 − 𝐵 ) / 2 ) ) ) + ( ( cos ‘ ( ( 𝐴 + 𝐵 ) / 2 ) ) · ( sin ‘ ( ( 𝐴 − 𝐵 ) / 2 ) ) ) ) − ( ( ( sin ‘ ( ( 𝐴 + 𝐵 ) / 2 ) ) · ( cos ‘ ( ( 𝐴 − 𝐵 ) / 2 ) ) ) − ( ( cos ‘ ( ( 𝐴 + 𝐵 ) / 2 ) ) · ( sin ‘ ( ( 𝐴 − 𝐵 ) / 2 ) ) ) ) ) ) |
12 |
|
sincl |
⊢ ( ( ( 𝐴 + 𝐵 ) / 2 ) ∈ ℂ → ( sin ‘ ( ( 𝐴 + 𝐵 ) / 2 ) ) ∈ ℂ ) |
13 |
|
coscl |
⊢ ( ( ( 𝐴 − 𝐵 ) / 2 ) ∈ ℂ → ( cos ‘ ( ( 𝐴 − 𝐵 ) / 2 ) ) ∈ ℂ ) |
14 |
|
mulcl |
⊢ ( ( ( sin ‘ ( ( 𝐴 + 𝐵 ) / 2 ) ) ∈ ℂ ∧ ( cos ‘ ( ( 𝐴 − 𝐵 ) / 2 ) ) ∈ ℂ ) → ( ( sin ‘ ( ( 𝐴 + 𝐵 ) / 2 ) ) · ( cos ‘ ( ( 𝐴 − 𝐵 ) / 2 ) ) ) ∈ ℂ ) |
15 |
12 13 14
|
syl2an |
⊢ ( ( ( ( 𝐴 + 𝐵 ) / 2 ) ∈ ℂ ∧ ( ( 𝐴 − 𝐵 ) / 2 ) ∈ ℂ ) → ( ( sin ‘ ( ( 𝐴 + 𝐵 ) / 2 ) ) · ( cos ‘ ( ( 𝐴 − 𝐵 ) / 2 ) ) ) ∈ ℂ ) |
16 |
1 15
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( sin ‘ ( ( 𝐴 + 𝐵 ) / 2 ) ) · ( cos ‘ ( ( 𝐴 − 𝐵 ) / 2 ) ) ) ∈ ℂ ) |
17 |
16 6 6
|
pnncand |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( ( sin ‘ ( ( 𝐴 + 𝐵 ) / 2 ) ) · ( cos ‘ ( ( 𝐴 − 𝐵 ) / 2 ) ) ) + ( ( cos ‘ ( ( 𝐴 + 𝐵 ) / 2 ) ) · ( sin ‘ ( ( 𝐴 − 𝐵 ) / 2 ) ) ) ) − ( ( ( sin ‘ ( ( 𝐴 + 𝐵 ) / 2 ) ) · ( cos ‘ ( ( 𝐴 − 𝐵 ) / 2 ) ) ) − ( ( cos ‘ ( ( 𝐴 + 𝐵 ) / 2 ) ) · ( sin ‘ ( ( 𝐴 − 𝐵 ) / 2 ) ) ) ) ) = ( ( ( cos ‘ ( ( 𝐴 + 𝐵 ) / 2 ) ) · ( sin ‘ ( ( 𝐴 − 𝐵 ) / 2 ) ) ) + ( ( cos ‘ ( ( 𝐴 + 𝐵 ) / 2 ) ) · ( sin ‘ ( ( 𝐴 − 𝐵 ) / 2 ) ) ) ) ) |
18 |
11 17
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( sin ‘ ( ( ( 𝐴 + 𝐵 ) / 2 ) + ( ( 𝐴 − 𝐵 ) / 2 ) ) ) − ( sin ‘ ( ( ( 𝐴 + 𝐵 ) / 2 ) − ( ( 𝐴 − 𝐵 ) / 2 ) ) ) ) = ( ( ( cos ‘ ( ( 𝐴 + 𝐵 ) / 2 ) ) · ( sin ‘ ( ( 𝐴 − 𝐵 ) / 2 ) ) ) + ( ( cos ‘ ( ( 𝐴 + 𝐵 ) / 2 ) ) · ( sin ‘ ( ( 𝐴 − 𝐵 ) / 2 ) ) ) ) ) |
19 |
|
halfaddsub |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + ( ( 𝐴 − 𝐵 ) / 2 ) ) = 𝐴 ∧ ( ( ( 𝐴 + 𝐵 ) / 2 ) − ( ( 𝐴 − 𝐵 ) / 2 ) ) = 𝐵 ) ) |
20 |
19
|
simpld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( 𝐴 + 𝐵 ) / 2 ) + ( ( 𝐴 − 𝐵 ) / 2 ) ) = 𝐴 ) |
21 |
20
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( sin ‘ ( ( ( 𝐴 + 𝐵 ) / 2 ) + ( ( 𝐴 − 𝐵 ) / 2 ) ) ) = ( sin ‘ 𝐴 ) ) |
22 |
19
|
simprd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( 𝐴 + 𝐵 ) / 2 ) − ( ( 𝐴 − 𝐵 ) / 2 ) ) = 𝐵 ) |
23 |
22
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( sin ‘ ( ( ( 𝐴 + 𝐵 ) / 2 ) − ( ( 𝐴 − 𝐵 ) / 2 ) ) ) = ( sin ‘ 𝐵 ) ) |
24 |
21 23
|
oveq12d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( sin ‘ ( ( ( 𝐴 + 𝐵 ) / 2 ) + ( ( 𝐴 − 𝐵 ) / 2 ) ) ) − ( sin ‘ ( ( ( 𝐴 + 𝐵 ) / 2 ) − ( ( 𝐴 − 𝐵 ) / 2 ) ) ) ) = ( ( sin ‘ 𝐴 ) − ( sin ‘ 𝐵 ) ) ) |
25 |
7 18 24
|
3eqtr2rd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( sin ‘ 𝐴 ) − ( sin ‘ 𝐵 ) ) = ( 2 · ( ( cos ‘ ( ( 𝐴 + 𝐵 ) / 2 ) ) · ( sin ‘ ( ( 𝐴 − 𝐵 ) / 2 ) ) ) ) ) |