Metamath Proof Explorer
Description: Factor the difference of two squares. (Contributed by NM, 7-Feb-2005)
|
|
Ref |
Expression |
|
Hypotheses |
binom2.1 |
⊢ 𝐴 ∈ ℂ |
|
|
binom2.2 |
⊢ 𝐵 ∈ ℂ |
|
Assertion |
subsqi |
⊢ ( ( 𝐴 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) = ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
binom2.1 |
⊢ 𝐴 ∈ ℂ |
2 |
|
binom2.2 |
⊢ 𝐵 ∈ ℂ |
3 |
|
subsq |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) = ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) ) |
4 |
1 2 3
|
mp2an |
⊢ ( ( 𝐴 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) = ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) |