Metamath Proof Explorer
Description: Swap subtrahend and result of subtraction. (Contributed by Glauco
Siliprandi, 11-Dec-2019)
|
|
Ref |
Expression |
|
Hypotheses |
subsub23d.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
|
|
subsub23d.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
|
|
subsub23d.3 |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
|
Assertion |
subsub23d |
⊢ ( 𝜑 → ( ( 𝐴 − 𝐵 ) = 𝐶 ↔ ( 𝐴 − 𝐶 ) = 𝐵 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
subsub23d.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
2 |
|
subsub23d.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
3 |
|
subsub23d.3 |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
4 |
|
subsub23 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 − 𝐵 ) = 𝐶 ↔ ( 𝐴 − 𝐶 ) = 𝐵 ) ) |
5 |
1 2 3 4
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐴 − 𝐵 ) = 𝐶 ↔ ( 𝐴 − 𝐶 ) = 𝐵 ) ) |