Step |
Hyp |
Ref |
Expression |
1 |
|
subsubc.d |
⊢ 𝐷 = ( 𝐶 ↾cat 𝐻 ) |
2 |
|
id |
⊢ ( 𝐽 ∈ ( Subcat ‘ 𝐷 ) → 𝐽 ∈ ( Subcat ‘ 𝐷 ) ) |
3 |
|
eqid |
⊢ ( Homf ‘ 𝐷 ) = ( Homf ‘ 𝐷 ) |
4 |
2 3
|
subcssc |
⊢ ( 𝐽 ∈ ( Subcat ‘ 𝐷 ) → 𝐽 ⊆cat ( Homf ‘ 𝐷 ) ) |
5 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
6 |
|
subcrcl |
⊢ ( 𝐻 ∈ ( Subcat ‘ 𝐶 ) → 𝐶 ∈ Cat ) |
7 |
|
id |
⊢ ( 𝐻 ∈ ( Subcat ‘ 𝐶 ) → 𝐻 ∈ ( Subcat ‘ 𝐶 ) ) |
8 |
|
eqidd |
⊢ ( 𝐻 ∈ ( Subcat ‘ 𝐶 ) → dom dom 𝐻 = dom dom 𝐻 ) |
9 |
7 8
|
subcfn |
⊢ ( 𝐻 ∈ ( Subcat ‘ 𝐶 ) → 𝐻 Fn ( dom dom 𝐻 × dom dom 𝐻 ) ) |
10 |
7 9 5
|
subcss1 |
⊢ ( 𝐻 ∈ ( Subcat ‘ 𝐶 ) → dom dom 𝐻 ⊆ ( Base ‘ 𝐶 ) ) |
11 |
1 5 6 9 10
|
reschomf |
⊢ ( 𝐻 ∈ ( Subcat ‘ 𝐶 ) → 𝐻 = ( Homf ‘ 𝐷 ) ) |
12 |
11
|
breq2d |
⊢ ( 𝐻 ∈ ( Subcat ‘ 𝐶 ) → ( 𝐽 ⊆cat 𝐻 ↔ 𝐽 ⊆cat ( Homf ‘ 𝐷 ) ) ) |
13 |
4 12
|
syl5ibr |
⊢ ( 𝐻 ∈ ( Subcat ‘ 𝐶 ) → ( 𝐽 ∈ ( Subcat ‘ 𝐷 ) → 𝐽 ⊆cat 𝐻 ) ) |
14 |
13
|
pm4.71rd |
⊢ ( 𝐻 ∈ ( Subcat ‘ 𝐶 ) → ( 𝐽 ∈ ( Subcat ‘ 𝐷 ) ↔ ( 𝐽 ⊆cat 𝐻 ∧ 𝐽 ∈ ( Subcat ‘ 𝐷 ) ) ) ) |
15 |
|
simpr |
⊢ ( ( 𝐻 ∈ ( Subcat ‘ 𝐶 ) ∧ 𝐽 ⊆cat 𝐻 ) → 𝐽 ⊆cat 𝐻 ) |
16 |
|
simpl |
⊢ ( ( 𝐻 ∈ ( Subcat ‘ 𝐶 ) ∧ 𝐽 ⊆cat 𝐻 ) → 𝐻 ∈ ( Subcat ‘ 𝐶 ) ) |
17 |
|
eqid |
⊢ ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐶 ) |
18 |
16 17
|
subcssc |
⊢ ( ( 𝐻 ∈ ( Subcat ‘ 𝐶 ) ∧ 𝐽 ⊆cat 𝐻 ) → 𝐻 ⊆cat ( Homf ‘ 𝐶 ) ) |
19 |
|
ssctr |
⊢ ( ( 𝐽 ⊆cat 𝐻 ∧ 𝐻 ⊆cat ( Homf ‘ 𝐶 ) ) → 𝐽 ⊆cat ( Homf ‘ 𝐶 ) ) |
20 |
15 18 19
|
syl2anc |
⊢ ( ( 𝐻 ∈ ( Subcat ‘ 𝐶 ) ∧ 𝐽 ⊆cat 𝐻 ) → 𝐽 ⊆cat ( Homf ‘ 𝐶 ) ) |
21 |
12
|
biimpa |
⊢ ( ( 𝐻 ∈ ( Subcat ‘ 𝐶 ) ∧ 𝐽 ⊆cat 𝐻 ) → 𝐽 ⊆cat ( Homf ‘ 𝐷 ) ) |
22 |
20 21
|
2thd |
⊢ ( ( 𝐻 ∈ ( Subcat ‘ 𝐶 ) ∧ 𝐽 ⊆cat 𝐻 ) → ( 𝐽 ⊆cat ( Homf ‘ 𝐶 ) ↔ 𝐽 ⊆cat ( Homf ‘ 𝐷 ) ) ) |
23 |
16
|
adantr |
⊢ ( ( ( 𝐻 ∈ ( Subcat ‘ 𝐶 ) ∧ 𝐽 ⊆cat 𝐻 ) ∧ 𝑥 ∈ dom dom 𝐽 ) → 𝐻 ∈ ( Subcat ‘ 𝐶 ) ) |
24 |
9
|
adantr |
⊢ ( ( 𝐻 ∈ ( Subcat ‘ 𝐶 ) ∧ 𝐽 ⊆cat 𝐻 ) → 𝐻 Fn ( dom dom 𝐻 × dom dom 𝐻 ) ) |
25 |
24
|
adantr |
⊢ ( ( ( 𝐻 ∈ ( Subcat ‘ 𝐶 ) ∧ 𝐽 ⊆cat 𝐻 ) ∧ 𝑥 ∈ dom dom 𝐽 ) → 𝐻 Fn ( dom dom 𝐻 × dom dom 𝐻 ) ) |
26 |
|
eqid |
⊢ ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 ) |
27 |
|
eqidd |
⊢ ( ( 𝐻 ∈ ( Subcat ‘ 𝐶 ) ∧ 𝐽 ⊆cat 𝐻 ) → dom dom 𝐽 = dom dom 𝐽 ) |
28 |
15 27
|
sscfn1 |
⊢ ( ( 𝐻 ∈ ( Subcat ‘ 𝐶 ) ∧ 𝐽 ⊆cat 𝐻 ) → 𝐽 Fn ( dom dom 𝐽 × dom dom 𝐽 ) ) |
29 |
28 24 15
|
ssc1 |
⊢ ( ( 𝐻 ∈ ( Subcat ‘ 𝐶 ) ∧ 𝐽 ⊆cat 𝐻 ) → dom dom 𝐽 ⊆ dom dom 𝐻 ) |
30 |
29
|
sselda |
⊢ ( ( ( 𝐻 ∈ ( Subcat ‘ 𝐶 ) ∧ 𝐽 ⊆cat 𝐻 ) ∧ 𝑥 ∈ dom dom 𝐽 ) → 𝑥 ∈ dom dom 𝐻 ) |
31 |
1 23 25 26 30
|
subcid |
⊢ ( ( ( 𝐻 ∈ ( Subcat ‘ 𝐶 ) ∧ 𝐽 ⊆cat 𝐻 ) ∧ 𝑥 ∈ dom dom 𝐽 ) → ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) = ( ( Id ‘ 𝐷 ) ‘ 𝑥 ) ) |
32 |
31
|
eleq1d |
⊢ ( ( ( 𝐻 ∈ ( Subcat ‘ 𝐶 ) ∧ 𝐽 ⊆cat 𝐻 ) ∧ 𝑥 ∈ dom dom 𝐽 ) → ( ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ↔ ( ( Id ‘ 𝐷 ) ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ) ) |
33 |
32
|
ralbidva |
⊢ ( ( 𝐻 ∈ ( Subcat ‘ 𝐶 ) ∧ 𝐽 ⊆cat 𝐻 ) → ( ∀ 𝑥 ∈ dom dom 𝐽 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ↔ ∀ 𝑥 ∈ dom dom 𝐽 ( ( Id ‘ 𝐷 ) ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ) ) |
34 |
1
|
oveq1i |
⊢ ( 𝐷 ↾cat 𝐽 ) = ( ( 𝐶 ↾cat 𝐻 ) ↾cat 𝐽 ) |
35 |
6
|
adantr |
⊢ ( ( 𝐻 ∈ ( Subcat ‘ 𝐶 ) ∧ 𝐽 ⊆cat 𝐻 ) → 𝐶 ∈ Cat ) |
36 |
|
dmexg |
⊢ ( 𝐻 ∈ ( Subcat ‘ 𝐶 ) → dom 𝐻 ∈ V ) |
37 |
36
|
dmexd |
⊢ ( 𝐻 ∈ ( Subcat ‘ 𝐶 ) → dom dom 𝐻 ∈ V ) |
38 |
37
|
adantr |
⊢ ( ( 𝐻 ∈ ( Subcat ‘ 𝐶 ) ∧ 𝐽 ⊆cat 𝐻 ) → dom dom 𝐻 ∈ V ) |
39 |
35 24 28 38 29
|
rescabs |
⊢ ( ( 𝐻 ∈ ( Subcat ‘ 𝐶 ) ∧ 𝐽 ⊆cat 𝐻 ) → ( ( 𝐶 ↾cat 𝐻 ) ↾cat 𝐽 ) = ( 𝐶 ↾cat 𝐽 ) ) |
40 |
34 39
|
eqtr2id |
⊢ ( ( 𝐻 ∈ ( Subcat ‘ 𝐶 ) ∧ 𝐽 ⊆cat 𝐻 ) → ( 𝐶 ↾cat 𝐽 ) = ( 𝐷 ↾cat 𝐽 ) ) |
41 |
40
|
eleq1d |
⊢ ( ( 𝐻 ∈ ( Subcat ‘ 𝐶 ) ∧ 𝐽 ⊆cat 𝐻 ) → ( ( 𝐶 ↾cat 𝐽 ) ∈ Cat ↔ ( 𝐷 ↾cat 𝐽 ) ∈ Cat ) ) |
42 |
22 33 41
|
3anbi123d |
⊢ ( ( 𝐻 ∈ ( Subcat ‘ 𝐶 ) ∧ 𝐽 ⊆cat 𝐻 ) → ( ( 𝐽 ⊆cat ( Homf ‘ 𝐶 ) ∧ ∀ 𝑥 ∈ dom dom 𝐽 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ∧ ( 𝐶 ↾cat 𝐽 ) ∈ Cat ) ↔ ( 𝐽 ⊆cat ( Homf ‘ 𝐷 ) ∧ ∀ 𝑥 ∈ dom dom 𝐽 ( ( Id ‘ 𝐷 ) ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ∧ ( 𝐷 ↾cat 𝐽 ) ∈ Cat ) ) ) |
43 |
|
eqid |
⊢ ( 𝐶 ↾cat 𝐽 ) = ( 𝐶 ↾cat 𝐽 ) |
44 |
17 26 43 35 28
|
issubc3 |
⊢ ( ( 𝐻 ∈ ( Subcat ‘ 𝐶 ) ∧ 𝐽 ⊆cat 𝐻 ) → ( 𝐽 ∈ ( Subcat ‘ 𝐶 ) ↔ ( 𝐽 ⊆cat ( Homf ‘ 𝐶 ) ∧ ∀ 𝑥 ∈ dom dom 𝐽 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ∧ ( 𝐶 ↾cat 𝐽 ) ∈ Cat ) ) ) |
45 |
|
eqid |
⊢ ( Id ‘ 𝐷 ) = ( Id ‘ 𝐷 ) |
46 |
|
eqid |
⊢ ( 𝐷 ↾cat 𝐽 ) = ( 𝐷 ↾cat 𝐽 ) |
47 |
1 7
|
subccat |
⊢ ( 𝐻 ∈ ( Subcat ‘ 𝐶 ) → 𝐷 ∈ Cat ) |
48 |
47
|
adantr |
⊢ ( ( 𝐻 ∈ ( Subcat ‘ 𝐶 ) ∧ 𝐽 ⊆cat 𝐻 ) → 𝐷 ∈ Cat ) |
49 |
3 45 46 48 28
|
issubc3 |
⊢ ( ( 𝐻 ∈ ( Subcat ‘ 𝐶 ) ∧ 𝐽 ⊆cat 𝐻 ) → ( 𝐽 ∈ ( Subcat ‘ 𝐷 ) ↔ ( 𝐽 ⊆cat ( Homf ‘ 𝐷 ) ∧ ∀ 𝑥 ∈ dom dom 𝐽 ( ( Id ‘ 𝐷 ) ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ∧ ( 𝐷 ↾cat 𝐽 ) ∈ Cat ) ) ) |
50 |
42 44 49
|
3bitr4rd |
⊢ ( ( 𝐻 ∈ ( Subcat ‘ 𝐶 ) ∧ 𝐽 ⊆cat 𝐻 ) → ( 𝐽 ∈ ( Subcat ‘ 𝐷 ) ↔ 𝐽 ∈ ( Subcat ‘ 𝐶 ) ) ) |
51 |
50
|
pm5.32da |
⊢ ( 𝐻 ∈ ( Subcat ‘ 𝐶 ) → ( ( 𝐽 ⊆cat 𝐻 ∧ 𝐽 ∈ ( Subcat ‘ 𝐷 ) ) ↔ ( 𝐽 ⊆cat 𝐻 ∧ 𝐽 ∈ ( Subcat ‘ 𝐶 ) ) ) ) |
52 |
14 51
|
bitrd |
⊢ ( 𝐻 ∈ ( Subcat ‘ 𝐶 ) → ( 𝐽 ∈ ( Subcat ‘ 𝐷 ) ↔ ( 𝐽 ⊆cat 𝐻 ∧ 𝐽 ∈ ( Subcat ‘ 𝐶 ) ) ) ) |
53 |
52
|
biancomd |
⊢ ( 𝐻 ∈ ( Subcat ‘ 𝐶 ) → ( 𝐽 ∈ ( Subcat ‘ 𝐷 ) ↔ ( 𝐽 ∈ ( Subcat ‘ 𝐶 ) ∧ 𝐽 ⊆cat 𝐻 ) ) ) |