| Step | Hyp | Ref | Expression | 
						
							| 1 |  | subsubg.h | ⊢ 𝐻  =  ( 𝐺  ↾s  𝑆 ) | 
						
							| 2 |  | subgrcl | ⊢ ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  →  𝐺  ∈  Grp ) | 
						
							| 3 | 2 | adantr | ⊢ ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐴  ∈  ( SubGrp ‘ 𝐻 ) )  →  𝐺  ∈  Grp ) | 
						
							| 4 |  | eqid | ⊢ ( Base ‘ 𝐻 )  =  ( Base ‘ 𝐻 ) | 
						
							| 5 | 4 | subgss | ⊢ ( 𝐴  ∈  ( SubGrp ‘ 𝐻 )  →  𝐴  ⊆  ( Base ‘ 𝐻 ) ) | 
						
							| 6 | 5 | adantl | ⊢ ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐴  ∈  ( SubGrp ‘ 𝐻 ) )  →  𝐴  ⊆  ( Base ‘ 𝐻 ) ) | 
						
							| 7 | 1 | subgbas | ⊢ ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  →  𝑆  =  ( Base ‘ 𝐻 ) ) | 
						
							| 8 | 7 | adantr | ⊢ ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐴  ∈  ( SubGrp ‘ 𝐻 ) )  →  𝑆  =  ( Base ‘ 𝐻 ) ) | 
						
							| 9 | 6 8 | sseqtrrd | ⊢ ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐴  ∈  ( SubGrp ‘ 𝐻 ) )  →  𝐴  ⊆  𝑆 ) | 
						
							| 10 |  | eqid | ⊢ ( Base ‘ 𝐺 )  =  ( Base ‘ 𝐺 ) | 
						
							| 11 | 10 | subgss | ⊢ ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  →  𝑆  ⊆  ( Base ‘ 𝐺 ) ) | 
						
							| 12 | 11 | adantr | ⊢ ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐴  ∈  ( SubGrp ‘ 𝐻 ) )  →  𝑆  ⊆  ( Base ‘ 𝐺 ) ) | 
						
							| 13 | 9 12 | sstrd | ⊢ ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐴  ∈  ( SubGrp ‘ 𝐻 ) )  →  𝐴  ⊆  ( Base ‘ 𝐺 ) ) | 
						
							| 14 | 1 | oveq1i | ⊢ ( 𝐻  ↾s  𝐴 )  =  ( ( 𝐺  ↾s  𝑆 )  ↾s  𝐴 ) | 
						
							| 15 |  | ressabs | ⊢ ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐴  ⊆  𝑆 )  →  ( ( 𝐺  ↾s  𝑆 )  ↾s  𝐴 )  =  ( 𝐺  ↾s  𝐴 ) ) | 
						
							| 16 | 14 15 | eqtrid | ⊢ ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐴  ⊆  𝑆 )  →  ( 𝐻  ↾s  𝐴 )  =  ( 𝐺  ↾s  𝐴 ) ) | 
						
							| 17 | 9 16 | syldan | ⊢ ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐴  ∈  ( SubGrp ‘ 𝐻 ) )  →  ( 𝐻  ↾s  𝐴 )  =  ( 𝐺  ↾s  𝐴 ) ) | 
						
							| 18 |  | eqid | ⊢ ( 𝐻  ↾s  𝐴 )  =  ( 𝐻  ↾s  𝐴 ) | 
						
							| 19 | 18 | subggrp | ⊢ ( 𝐴  ∈  ( SubGrp ‘ 𝐻 )  →  ( 𝐻  ↾s  𝐴 )  ∈  Grp ) | 
						
							| 20 | 19 | adantl | ⊢ ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐴  ∈  ( SubGrp ‘ 𝐻 ) )  →  ( 𝐻  ↾s  𝐴 )  ∈  Grp ) | 
						
							| 21 | 17 20 | eqeltrrd | ⊢ ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐴  ∈  ( SubGrp ‘ 𝐻 ) )  →  ( 𝐺  ↾s  𝐴 )  ∈  Grp ) | 
						
							| 22 | 10 | issubg | ⊢ ( 𝐴  ∈  ( SubGrp ‘ 𝐺 )  ↔  ( 𝐺  ∈  Grp  ∧  𝐴  ⊆  ( Base ‘ 𝐺 )  ∧  ( 𝐺  ↾s  𝐴 )  ∈  Grp ) ) | 
						
							| 23 | 3 13 21 22 | syl3anbrc | ⊢ ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐴  ∈  ( SubGrp ‘ 𝐻 ) )  →  𝐴  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 24 | 23 9 | jca | ⊢ ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐴  ∈  ( SubGrp ‘ 𝐻 ) )  →  ( 𝐴  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐴  ⊆  𝑆 ) ) | 
						
							| 25 | 1 | subggrp | ⊢ ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  →  𝐻  ∈  Grp ) | 
						
							| 26 | 25 | adantr | ⊢ ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝐴  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐴  ⊆  𝑆 ) )  →  𝐻  ∈  Grp ) | 
						
							| 27 |  | simprr | ⊢ ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝐴  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐴  ⊆  𝑆 ) )  →  𝐴  ⊆  𝑆 ) | 
						
							| 28 | 7 | adantr | ⊢ ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝐴  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐴  ⊆  𝑆 ) )  →  𝑆  =  ( Base ‘ 𝐻 ) ) | 
						
							| 29 | 27 28 | sseqtrd | ⊢ ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝐴  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐴  ⊆  𝑆 ) )  →  𝐴  ⊆  ( Base ‘ 𝐻 ) ) | 
						
							| 30 | 16 | adantrl | ⊢ ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝐴  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐴  ⊆  𝑆 ) )  →  ( 𝐻  ↾s  𝐴 )  =  ( 𝐺  ↾s  𝐴 ) ) | 
						
							| 31 |  | eqid | ⊢ ( 𝐺  ↾s  𝐴 )  =  ( 𝐺  ↾s  𝐴 ) | 
						
							| 32 | 31 | subggrp | ⊢ ( 𝐴  ∈  ( SubGrp ‘ 𝐺 )  →  ( 𝐺  ↾s  𝐴 )  ∈  Grp ) | 
						
							| 33 | 32 | ad2antrl | ⊢ ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝐴  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐴  ⊆  𝑆 ) )  →  ( 𝐺  ↾s  𝐴 )  ∈  Grp ) | 
						
							| 34 | 30 33 | eqeltrd | ⊢ ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝐴  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐴  ⊆  𝑆 ) )  →  ( 𝐻  ↾s  𝐴 )  ∈  Grp ) | 
						
							| 35 | 4 | issubg | ⊢ ( 𝐴  ∈  ( SubGrp ‘ 𝐻 )  ↔  ( 𝐻  ∈  Grp  ∧  𝐴  ⊆  ( Base ‘ 𝐻 )  ∧  ( 𝐻  ↾s  𝐴 )  ∈  Grp ) ) | 
						
							| 36 | 26 29 34 35 | syl3anbrc | ⊢ ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝐴  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐴  ⊆  𝑆 ) )  →  𝐴  ∈  ( SubGrp ‘ 𝐻 ) ) | 
						
							| 37 | 24 36 | impbida | ⊢ ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  →  ( 𝐴  ∈  ( SubGrp ‘ 𝐻 )  ↔  ( 𝐴  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐴  ⊆  𝑆 ) ) ) |