Step |
Hyp |
Ref |
Expression |
1 |
|
subsubm.h |
⊢ 𝐻 = ( 𝐺 ↾s 𝑆 ) |
2 |
|
eqid |
⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) |
3 |
2
|
submss |
⊢ ( 𝐴 ∈ ( SubMnd ‘ 𝐻 ) → 𝐴 ⊆ ( Base ‘ 𝐻 ) ) |
4 |
3
|
adantl |
⊢ ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴 ∈ ( SubMnd ‘ 𝐻 ) ) → 𝐴 ⊆ ( Base ‘ 𝐻 ) ) |
5 |
1
|
submbas |
⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) → 𝑆 = ( Base ‘ 𝐻 ) ) |
6 |
5
|
adantr |
⊢ ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴 ∈ ( SubMnd ‘ 𝐻 ) ) → 𝑆 = ( Base ‘ 𝐻 ) ) |
7 |
4 6
|
sseqtrrd |
⊢ ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴 ∈ ( SubMnd ‘ 𝐻 ) ) → 𝐴 ⊆ 𝑆 ) |
8 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
9 |
8
|
submss |
⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
10 |
9
|
adantr |
⊢ ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴 ∈ ( SubMnd ‘ 𝐻 ) ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
11 |
7 10
|
sstrd |
⊢ ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴 ∈ ( SubMnd ‘ 𝐻 ) ) → 𝐴 ⊆ ( Base ‘ 𝐺 ) ) |
12 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
13 |
1 12
|
subm0 |
⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) → ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐻 ) ) |
14 |
13
|
adantr |
⊢ ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴 ∈ ( SubMnd ‘ 𝐻 ) ) → ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐻 ) ) |
15 |
|
eqid |
⊢ ( 0g ‘ 𝐻 ) = ( 0g ‘ 𝐻 ) |
16 |
15
|
subm0cl |
⊢ ( 𝐴 ∈ ( SubMnd ‘ 𝐻 ) → ( 0g ‘ 𝐻 ) ∈ 𝐴 ) |
17 |
16
|
adantl |
⊢ ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴 ∈ ( SubMnd ‘ 𝐻 ) ) → ( 0g ‘ 𝐻 ) ∈ 𝐴 ) |
18 |
14 17
|
eqeltrd |
⊢ ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴 ∈ ( SubMnd ‘ 𝐻 ) ) → ( 0g ‘ 𝐺 ) ∈ 𝐴 ) |
19 |
1
|
oveq1i |
⊢ ( 𝐻 ↾s 𝐴 ) = ( ( 𝐺 ↾s 𝑆 ) ↾s 𝐴 ) |
20 |
|
ressabs |
⊢ ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴 ⊆ 𝑆 ) → ( ( 𝐺 ↾s 𝑆 ) ↾s 𝐴 ) = ( 𝐺 ↾s 𝐴 ) ) |
21 |
19 20
|
eqtrid |
⊢ ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴 ⊆ 𝑆 ) → ( 𝐻 ↾s 𝐴 ) = ( 𝐺 ↾s 𝐴 ) ) |
22 |
7 21
|
syldan |
⊢ ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴 ∈ ( SubMnd ‘ 𝐻 ) ) → ( 𝐻 ↾s 𝐴 ) = ( 𝐺 ↾s 𝐴 ) ) |
23 |
|
eqid |
⊢ ( 𝐻 ↾s 𝐴 ) = ( 𝐻 ↾s 𝐴 ) |
24 |
23
|
submmnd |
⊢ ( 𝐴 ∈ ( SubMnd ‘ 𝐻 ) → ( 𝐻 ↾s 𝐴 ) ∈ Mnd ) |
25 |
24
|
adantl |
⊢ ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴 ∈ ( SubMnd ‘ 𝐻 ) ) → ( 𝐻 ↾s 𝐴 ) ∈ Mnd ) |
26 |
22 25
|
eqeltrrd |
⊢ ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴 ∈ ( SubMnd ‘ 𝐻 ) ) → ( 𝐺 ↾s 𝐴 ) ∈ Mnd ) |
27 |
|
submrcl |
⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) → 𝐺 ∈ Mnd ) |
28 |
27
|
adantr |
⊢ ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴 ∈ ( SubMnd ‘ 𝐻 ) ) → 𝐺 ∈ Mnd ) |
29 |
|
eqid |
⊢ ( 𝐺 ↾s 𝐴 ) = ( 𝐺 ↾s 𝐴 ) |
30 |
8 12 29
|
issubm2 |
⊢ ( 𝐺 ∈ Mnd → ( 𝐴 ∈ ( SubMnd ‘ 𝐺 ) ↔ ( 𝐴 ⊆ ( Base ‘ 𝐺 ) ∧ ( 0g ‘ 𝐺 ) ∈ 𝐴 ∧ ( 𝐺 ↾s 𝐴 ) ∈ Mnd ) ) ) |
31 |
28 30
|
syl |
⊢ ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴 ∈ ( SubMnd ‘ 𝐻 ) ) → ( 𝐴 ∈ ( SubMnd ‘ 𝐺 ) ↔ ( 𝐴 ⊆ ( Base ‘ 𝐺 ) ∧ ( 0g ‘ 𝐺 ) ∈ 𝐴 ∧ ( 𝐺 ↾s 𝐴 ) ∈ Mnd ) ) ) |
32 |
11 18 26 31
|
mpbir3and |
⊢ ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴 ∈ ( SubMnd ‘ 𝐻 ) ) → 𝐴 ∈ ( SubMnd ‘ 𝐺 ) ) |
33 |
32 7
|
jca |
⊢ ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴 ∈ ( SubMnd ‘ 𝐻 ) ) → ( 𝐴 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴 ⊆ 𝑆 ) ) |
34 |
|
simprr |
⊢ ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ ( 𝐴 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴 ⊆ 𝑆 ) ) → 𝐴 ⊆ 𝑆 ) |
35 |
5
|
adantr |
⊢ ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ ( 𝐴 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴 ⊆ 𝑆 ) ) → 𝑆 = ( Base ‘ 𝐻 ) ) |
36 |
34 35
|
sseqtrd |
⊢ ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ ( 𝐴 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴 ⊆ 𝑆 ) ) → 𝐴 ⊆ ( Base ‘ 𝐻 ) ) |
37 |
13
|
adantr |
⊢ ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ ( 𝐴 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴 ⊆ 𝑆 ) ) → ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐻 ) ) |
38 |
12
|
subm0cl |
⊢ ( 𝐴 ∈ ( SubMnd ‘ 𝐺 ) → ( 0g ‘ 𝐺 ) ∈ 𝐴 ) |
39 |
38
|
ad2antrl |
⊢ ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ ( 𝐴 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴 ⊆ 𝑆 ) ) → ( 0g ‘ 𝐺 ) ∈ 𝐴 ) |
40 |
37 39
|
eqeltrrd |
⊢ ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ ( 𝐴 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴 ⊆ 𝑆 ) ) → ( 0g ‘ 𝐻 ) ∈ 𝐴 ) |
41 |
21
|
adantrl |
⊢ ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ ( 𝐴 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴 ⊆ 𝑆 ) ) → ( 𝐻 ↾s 𝐴 ) = ( 𝐺 ↾s 𝐴 ) ) |
42 |
29
|
submmnd |
⊢ ( 𝐴 ∈ ( SubMnd ‘ 𝐺 ) → ( 𝐺 ↾s 𝐴 ) ∈ Mnd ) |
43 |
42
|
ad2antrl |
⊢ ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ ( 𝐴 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴 ⊆ 𝑆 ) ) → ( 𝐺 ↾s 𝐴 ) ∈ Mnd ) |
44 |
41 43
|
eqeltrd |
⊢ ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ ( 𝐴 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴 ⊆ 𝑆 ) ) → ( 𝐻 ↾s 𝐴 ) ∈ Mnd ) |
45 |
1
|
submmnd |
⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) → 𝐻 ∈ Mnd ) |
46 |
45
|
adantr |
⊢ ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ ( 𝐴 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴 ⊆ 𝑆 ) ) → 𝐻 ∈ Mnd ) |
47 |
2 15 23
|
issubm2 |
⊢ ( 𝐻 ∈ Mnd → ( 𝐴 ∈ ( SubMnd ‘ 𝐻 ) ↔ ( 𝐴 ⊆ ( Base ‘ 𝐻 ) ∧ ( 0g ‘ 𝐻 ) ∈ 𝐴 ∧ ( 𝐻 ↾s 𝐴 ) ∈ Mnd ) ) ) |
48 |
46 47
|
syl |
⊢ ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ ( 𝐴 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴 ⊆ 𝑆 ) ) → ( 𝐴 ∈ ( SubMnd ‘ 𝐻 ) ↔ ( 𝐴 ⊆ ( Base ‘ 𝐻 ) ∧ ( 0g ‘ 𝐻 ) ∈ 𝐴 ∧ ( 𝐻 ↾s 𝐴 ) ∈ Mnd ) ) ) |
49 |
36 40 44 48
|
mpbir3and |
⊢ ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ ( 𝐴 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴 ⊆ 𝑆 ) ) → 𝐴 ∈ ( SubMnd ‘ 𝐻 ) ) |
50 |
33 49
|
impbida |
⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) → ( 𝐴 ∈ ( SubMnd ‘ 𝐻 ) ↔ ( 𝐴 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴 ⊆ 𝑆 ) ) ) |