| Step | Hyp | Ref | Expression | 
						
							| 1 |  | subsubm.h | ⊢ 𝐻  =  ( 𝐺  ↾s  𝑆 ) | 
						
							| 2 |  | eqid | ⊢ ( Base ‘ 𝐻 )  =  ( Base ‘ 𝐻 ) | 
						
							| 3 | 2 | submss | ⊢ ( 𝐴  ∈  ( SubMnd ‘ 𝐻 )  →  𝐴  ⊆  ( Base ‘ 𝐻 ) ) | 
						
							| 4 | 3 | adantl | ⊢ ( ( 𝑆  ∈  ( SubMnd ‘ 𝐺 )  ∧  𝐴  ∈  ( SubMnd ‘ 𝐻 ) )  →  𝐴  ⊆  ( Base ‘ 𝐻 ) ) | 
						
							| 5 | 1 | submbas | ⊢ ( 𝑆  ∈  ( SubMnd ‘ 𝐺 )  →  𝑆  =  ( Base ‘ 𝐻 ) ) | 
						
							| 6 | 5 | adantr | ⊢ ( ( 𝑆  ∈  ( SubMnd ‘ 𝐺 )  ∧  𝐴  ∈  ( SubMnd ‘ 𝐻 ) )  →  𝑆  =  ( Base ‘ 𝐻 ) ) | 
						
							| 7 | 4 6 | sseqtrrd | ⊢ ( ( 𝑆  ∈  ( SubMnd ‘ 𝐺 )  ∧  𝐴  ∈  ( SubMnd ‘ 𝐻 ) )  →  𝐴  ⊆  𝑆 ) | 
						
							| 8 |  | eqid | ⊢ ( Base ‘ 𝐺 )  =  ( Base ‘ 𝐺 ) | 
						
							| 9 | 8 | submss | ⊢ ( 𝑆  ∈  ( SubMnd ‘ 𝐺 )  →  𝑆  ⊆  ( Base ‘ 𝐺 ) ) | 
						
							| 10 | 9 | adantr | ⊢ ( ( 𝑆  ∈  ( SubMnd ‘ 𝐺 )  ∧  𝐴  ∈  ( SubMnd ‘ 𝐻 ) )  →  𝑆  ⊆  ( Base ‘ 𝐺 ) ) | 
						
							| 11 | 7 10 | sstrd | ⊢ ( ( 𝑆  ∈  ( SubMnd ‘ 𝐺 )  ∧  𝐴  ∈  ( SubMnd ‘ 𝐻 ) )  →  𝐴  ⊆  ( Base ‘ 𝐺 ) ) | 
						
							| 12 |  | eqid | ⊢ ( 0g ‘ 𝐺 )  =  ( 0g ‘ 𝐺 ) | 
						
							| 13 | 1 12 | subm0 | ⊢ ( 𝑆  ∈  ( SubMnd ‘ 𝐺 )  →  ( 0g ‘ 𝐺 )  =  ( 0g ‘ 𝐻 ) ) | 
						
							| 14 | 13 | adantr | ⊢ ( ( 𝑆  ∈  ( SubMnd ‘ 𝐺 )  ∧  𝐴  ∈  ( SubMnd ‘ 𝐻 ) )  →  ( 0g ‘ 𝐺 )  =  ( 0g ‘ 𝐻 ) ) | 
						
							| 15 |  | eqid | ⊢ ( 0g ‘ 𝐻 )  =  ( 0g ‘ 𝐻 ) | 
						
							| 16 | 15 | subm0cl | ⊢ ( 𝐴  ∈  ( SubMnd ‘ 𝐻 )  →  ( 0g ‘ 𝐻 )  ∈  𝐴 ) | 
						
							| 17 | 16 | adantl | ⊢ ( ( 𝑆  ∈  ( SubMnd ‘ 𝐺 )  ∧  𝐴  ∈  ( SubMnd ‘ 𝐻 ) )  →  ( 0g ‘ 𝐻 )  ∈  𝐴 ) | 
						
							| 18 | 14 17 | eqeltrd | ⊢ ( ( 𝑆  ∈  ( SubMnd ‘ 𝐺 )  ∧  𝐴  ∈  ( SubMnd ‘ 𝐻 ) )  →  ( 0g ‘ 𝐺 )  ∈  𝐴 ) | 
						
							| 19 | 1 | oveq1i | ⊢ ( 𝐻  ↾s  𝐴 )  =  ( ( 𝐺  ↾s  𝑆 )  ↾s  𝐴 ) | 
						
							| 20 |  | ressabs | ⊢ ( ( 𝑆  ∈  ( SubMnd ‘ 𝐺 )  ∧  𝐴  ⊆  𝑆 )  →  ( ( 𝐺  ↾s  𝑆 )  ↾s  𝐴 )  =  ( 𝐺  ↾s  𝐴 ) ) | 
						
							| 21 | 19 20 | eqtrid | ⊢ ( ( 𝑆  ∈  ( SubMnd ‘ 𝐺 )  ∧  𝐴  ⊆  𝑆 )  →  ( 𝐻  ↾s  𝐴 )  =  ( 𝐺  ↾s  𝐴 ) ) | 
						
							| 22 | 7 21 | syldan | ⊢ ( ( 𝑆  ∈  ( SubMnd ‘ 𝐺 )  ∧  𝐴  ∈  ( SubMnd ‘ 𝐻 ) )  →  ( 𝐻  ↾s  𝐴 )  =  ( 𝐺  ↾s  𝐴 ) ) | 
						
							| 23 |  | eqid | ⊢ ( 𝐻  ↾s  𝐴 )  =  ( 𝐻  ↾s  𝐴 ) | 
						
							| 24 | 23 | submmnd | ⊢ ( 𝐴  ∈  ( SubMnd ‘ 𝐻 )  →  ( 𝐻  ↾s  𝐴 )  ∈  Mnd ) | 
						
							| 25 | 24 | adantl | ⊢ ( ( 𝑆  ∈  ( SubMnd ‘ 𝐺 )  ∧  𝐴  ∈  ( SubMnd ‘ 𝐻 ) )  →  ( 𝐻  ↾s  𝐴 )  ∈  Mnd ) | 
						
							| 26 | 22 25 | eqeltrrd | ⊢ ( ( 𝑆  ∈  ( SubMnd ‘ 𝐺 )  ∧  𝐴  ∈  ( SubMnd ‘ 𝐻 ) )  →  ( 𝐺  ↾s  𝐴 )  ∈  Mnd ) | 
						
							| 27 |  | submrcl | ⊢ ( 𝑆  ∈  ( SubMnd ‘ 𝐺 )  →  𝐺  ∈  Mnd ) | 
						
							| 28 | 27 | adantr | ⊢ ( ( 𝑆  ∈  ( SubMnd ‘ 𝐺 )  ∧  𝐴  ∈  ( SubMnd ‘ 𝐻 ) )  →  𝐺  ∈  Mnd ) | 
						
							| 29 |  | eqid | ⊢ ( 𝐺  ↾s  𝐴 )  =  ( 𝐺  ↾s  𝐴 ) | 
						
							| 30 | 8 12 29 | issubm2 | ⊢ ( 𝐺  ∈  Mnd  →  ( 𝐴  ∈  ( SubMnd ‘ 𝐺 )  ↔  ( 𝐴  ⊆  ( Base ‘ 𝐺 )  ∧  ( 0g ‘ 𝐺 )  ∈  𝐴  ∧  ( 𝐺  ↾s  𝐴 )  ∈  Mnd ) ) ) | 
						
							| 31 | 28 30 | syl | ⊢ ( ( 𝑆  ∈  ( SubMnd ‘ 𝐺 )  ∧  𝐴  ∈  ( SubMnd ‘ 𝐻 ) )  →  ( 𝐴  ∈  ( SubMnd ‘ 𝐺 )  ↔  ( 𝐴  ⊆  ( Base ‘ 𝐺 )  ∧  ( 0g ‘ 𝐺 )  ∈  𝐴  ∧  ( 𝐺  ↾s  𝐴 )  ∈  Mnd ) ) ) | 
						
							| 32 | 11 18 26 31 | mpbir3and | ⊢ ( ( 𝑆  ∈  ( SubMnd ‘ 𝐺 )  ∧  𝐴  ∈  ( SubMnd ‘ 𝐻 ) )  →  𝐴  ∈  ( SubMnd ‘ 𝐺 ) ) | 
						
							| 33 | 32 7 | jca | ⊢ ( ( 𝑆  ∈  ( SubMnd ‘ 𝐺 )  ∧  𝐴  ∈  ( SubMnd ‘ 𝐻 ) )  →  ( 𝐴  ∈  ( SubMnd ‘ 𝐺 )  ∧  𝐴  ⊆  𝑆 ) ) | 
						
							| 34 |  | simprr | ⊢ ( ( 𝑆  ∈  ( SubMnd ‘ 𝐺 )  ∧  ( 𝐴  ∈  ( SubMnd ‘ 𝐺 )  ∧  𝐴  ⊆  𝑆 ) )  →  𝐴  ⊆  𝑆 ) | 
						
							| 35 | 5 | adantr | ⊢ ( ( 𝑆  ∈  ( SubMnd ‘ 𝐺 )  ∧  ( 𝐴  ∈  ( SubMnd ‘ 𝐺 )  ∧  𝐴  ⊆  𝑆 ) )  →  𝑆  =  ( Base ‘ 𝐻 ) ) | 
						
							| 36 | 34 35 | sseqtrd | ⊢ ( ( 𝑆  ∈  ( SubMnd ‘ 𝐺 )  ∧  ( 𝐴  ∈  ( SubMnd ‘ 𝐺 )  ∧  𝐴  ⊆  𝑆 ) )  →  𝐴  ⊆  ( Base ‘ 𝐻 ) ) | 
						
							| 37 | 13 | adantr | ⊢ ( ( 𝑆  ∈  ( SubMnd ‘ 𝐺 )  ∧  ( 𝐴  ∈  ( SubMnd ‘ 𝐺 )  ∧  𝐴  ⊆  𝑆 ) )  →  ( 0g ‘ 𝐺 )  =  ( 0g ‘ 𝐻 ) ) | 
						
							| 38 | 12 | subm0cl | ⊢ ( 𝐴  ∈  ( SubMnd ‘ 𝐺 )  →  ( 0g ‘ 𝐺 )  ∈  𝐴 ) | 
						
							| 39 | 38 | ad2antrl | ⊢ ( ( 𝑆  ∈  ( SubMnd ‘ 𝐺 )  ∧  ( 𝐴  ∈  ( SubMnd ‘ 𝐺 )  ∧  𝐴  ⊆  𝑆 ) )  →  ( 0g ‘ 𝐺 )  ∈  𝐴 ) | 
						
							| 40 | 37 39 | eqeltrrd | ⊢ ( ( 𝑆  ∈  ( SubMnd ‘ 𝐺 )  ∧  ( 𝐴  ∈  ( SubMnd ‘ 𝐺 )  ∧  𝐴  ⊆  𝑆 ) )  →  ( 0g ‘ 𝐻 )  ∈  𝐴 ) | 
						
							| 41 | 21 | adantrl | ⊢ ( ( 𝑆  ∈  ( SubMnd ‘ 𝐺 )  ∧  ( 𝐴  ∈  ( SubMnd ‘ 𝐺 )  ∧  𝐴  ⊆  𝑆 ) )  →  ( 𝐻  ↾s  𝐴 )  =  ( 𝐺  ↾s  𝐴 ) ) | 
						
							| 42 | 29 | submmnd | ⊢ ( 𝐴  ∈  ( SubMnd ‘ 𝐺 )  →  ( 𝐺  ↾s  𝐴 )  ∈  Mnd ) | 
						
							| 43 | 42 | ad2antrl | ⊢ ( ( 𝑆  ∈  ( SubMnd ‘ 𝐺 )  ∧  ( 𝐴  ∈  ( SubMnd ‘ 𝐺 )  ∧  𝐴  ⊆  𝑆 ) )  →  ( 𝐺  ↾s  𝐴 )  ∈  Mnd ) | 
						
							| 44 | 41 43 | eqeltrd | ⊢ ( ( 𝑆  ∈  ( SubMnd ‘ 𝐺 )  ∧  ( 𝐴  ∈  ( SubMnd ‘ 𝐺 )  ∧  𝐴  ⊆  𝑆 ) )  →  ( 𝐻  ↾s  𝐴 )  ∈  Mnd ) | 
						
							| 45 | 1 | submmnd | ⊢ ( 𝑆  ∈  ( SubMnd ‘ 𝐺 )  →  𝐻  ∈  Mnd ) | 
						
							| 46 | 45 | adantr | ⊢ ( ( 𝑆  ∈  ( SubMnd ‘ 𝐺 )  ∧  ( 𝐴  ∈  ( SubMnd ‘ 𝐺 )  ∧  𝐴  ⊆  𝑆 ) )  →  𝐻  ∈  Mnd ) | 
						
							| 47 | 2 15 23 | issubm2 | ⊢ ( 𝐻  ∈  Mnd  →  ( 𝐴  ∈  ( SubMnd ‘ 𝐻 )  ↔  ( 𝐴  ⊆  ( Base ‘ 𝐻 )  ∧  ( 0g ‘ 𝐻 )  ∈  𝐴  ∧  ( 𝐻  ↾s  𝐴 )  ∈  Mnd ) ) ) | 
						
							| 48 | 46 47 | syl | ⊢ ( ( 𝑆  ∈  ( SubMnd ‘ 𝐺 )  ∧  ( 𝐴  ∈  ( SubMnd ‘ 𝐺 )  ∧  𝐴  ⊆  𝑆 ) )  →  ( 𝐴  ∈  ( SubMnd ‘ 𝐻 )  ↔  ( 𝐴  ⊆  ( Base ‘ 𝐻 )  ∧  ( 0g ‘ 𝐻 )  ∈  𝐴  ∧  ( 𝐻  ↾s  𝐴 )  ∈  Mnd ) ) ) | 
						
							| 49 | 36 40 44 48 | mpbir3and | ⊢ ( ( 𝑆  ∈  ( SubMnd ‘ 𝐺 )  ∧  ( 𝐴  ∈  ( SubMnd ‘ 𝐺 )  ∧  𝐴  ⊆  𝑆 ) )  →  𝐴  ∈  ( SubMnd ‘ 𝐻 ) ) | 
						
							| 50 | 33 49 | impbida | ⊢ ( 𝑆  ∈  ( SubMnd ‘ 𝐺 )  →  ( 𝐴  ∈  ( SubMnd ‘ 𝐻 )  ↔  ( 𝐴  ∈  ( SubMnd ‘ 𝐺 )  ∧  𝐴  ⊆  𝑆 ) ) ) |