| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subsubmgm.h |
⊢ 𝐻 = ( 𝐺 ↾s 𝑆 ) |
| 2 |
|
eqid |
⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) |
| 3 |
2
|
submgmss |
⊢ ( 𝐴 ∈ ( SubMgm ‘ 𝐻 ) → 𝐴 ⊆ ( Base ‘ 𝐻 ) ) |
| 4 |
3
|
adantl |
⊢ ( ( 𝑆 ∈ ( SubMgm ‘ 𝐺 ) ∧ 𝐴 ∈ ( SubMgm ‘ 𝐻 ) ) → 𝐴 ⊆ ( Base ‘ 𝐻 ) ) |
| 5 |
1
|
submgmbas |
⊢ ( 𝑆 ∈ ( SubMgm ‘ 𝐺 ) → 𝑆 = ( Base ‘ 𝐻 ) ) |
| 6 |
5
|
adantr |
⊢ ( ( 𝑆 ∈ ( SubMgm ‘ 𝐺 ) ∧ 𝐴 ∈ ( SubMgm ‘ 𝐻 ) ) → 𝑆 = ( Base ‘ 𝐻 ) ) |
| 7 |
4 6
|
sseqtrrd |
⊢ ( ( 𝑆 ∈ ( SubMgm ‘ 𝐺 ) ∧ 𝐴 ∈ ( SubMgm ‘ 𝐻 ) ) → 𝐴 ⊆ 𝑆 ) |
| 8 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
| 9 |
8
|
submgmss |
⊢ ( 𝑆 ∈ ( SubMgm ‘ 𝐺 ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
| 10 |
9
|
adantr |
⊢ ( ( 𝑆 ∈ ( SubMgm ‘ 𝐺 ) ∧ 𝐴 ∈ ( SubMgm ‘ 𝐻 ) ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
| 11 |
7 10
|
sstrd |
⊢ ( ( 𝑆 ∈ ( SubMgm ‘ 𝐺 ) ∧ 𝐴 ∈ ( SubMgm ‘ 𝐻 ) ) → 𝐴 ⊆ ( Base ‘ 𝐺 ) ) |
| 12 |
1
|
oveq1i |
⊢ ( 𝐻 ↾s 𝐴 ) = ( ( 𝐺 ↾s 𝑆 ) ↾s 𝐴 ) |
| 13 |
|
ressabs |
⊢ ( ( 𝑆 ∈ ( SubMgm ‘ 𝐺 ) ∧ 𝐴 ⊆ 𝑆 ) → ( ( 𝐺 ↾s 𝑆 ) ↾s 𝐴 ) = ( 𝐺 ↾s 𝐴 ) ) |
| 14 |
12 13
|
eqtrid |
⊢ ( ( 𝑆 ∈ ( SubMgm ‘ 𝐺 ) ∧ 𝐴 ⊆ 𝑆 ) → ( 𝐻 ↾s 𝐴 ) = ( 𝐺 ↾s 𝐴 ) ) |
| 15 |
7 14
|
syldan |
⊢ ( ( 𝑆 ∈ ( SubMgm ‘ 𝐺 ) ∧ 𝐴 ∈ ( SubMgm ‘ 𝐻 ) ) → ( 𝐻 ↾s 𝐴 ) = ( 𝐺 ↾s 𝐴 ) ) |
| 16 |
|
eqid |
⊢ ( 𝐻 ↾s 𝐴 ) = ( 𝐻 ↾s 𝐴 ) |
| 17 |
16
|
submgmmgm |
⊢ ( 𝐴 ∈ ( SubMgm ‘ 𝐻 ) → ( 𝐻 ↾s 𝐴 ) ∈ Mgm ) |
| 18 |
17
|
adantl |
⊢ ( ( 𝑆 ∈ ( SubMgm ‘ 𝐺 ) ∧ 𝐴 ∈ ( SubMgm ‘ 𝐻 ) ) → ( 𝐻 ↾s 𝐴 ) ∈ Mgm ) |
| 19 |
15 18
|
eqeltrrd |
⊢ ( ( 𝑆 ∈ ( SubMgm ‘ 𝐺 ) ∧ 𝐴 ∈ ( SubMgm ‘ 𝐻 ) ) → ( 𝐺 ↾s 𝐴 ) ∈ Mgm ) |
| 20 |
|
submgmrcl |
⊢ ( 𝑆 ∈ ( SubMgm ‘ 𝐺 ) → 𝐺 ∈ Mgm ) |
| 21 |
20
|
adantr |
⊢ ( ( 𝑆 ∈ ( SubMgm ‘ 𝐺 ) ∧ 𝐴 ∈ ( SubMgm ‘ 𝐻 ) ) → 𝐺 ∈ Mgm ) |
| 22 |
|
eqid |
⊢ ( 𝐺 ↾s 𝐴 ) = ( 𝐺 ↾s 𝐴 ) |
| 23 |
8 22
|
issubmgm2 |
⊢ ( 𝐺 ∈ Mgm → ( 𝐴 ∈ ( SubMgm ‘ 𝐺 ) ↔ ( 𝐴 ⊆ ( Base ‘ 𝐺 ) ∧ ( 𝐺 ↾s 𝐴 ) ∈ Mgm ) ) ) |
| 24 |
21 23
|
syl |
⊢ ( ( 𝑆 ∈ ( SubMgm ‘ 𝐺 ) ∧ 𝐴 ∈ ( SubMgm ‘ 𝐻 ) ) → ( 𝐴 ∈ ( SubMgm ‘ 𝐺 ) ↔ ( 𝐴 ⊆ ( Base ‘ 𝐺 ) ∧ ( 𝐺 ↾s 𝐴 ) ∈ Mgm ) ) ) |
| 25 |
11 19 24
|
mpbir2and |
⊢ ( ( 𝑆 ∈ ( SubMgm ‘ 𝐺 ) ∧ 𝐴 ∈ ( SubMgm ‘ 𝐻 ) ) → 𝐴 ∈ ( SubMgm ‘ 𝐺 ) ) |
| 26 |
25 7
|
jca |
⊢ ( ( 𝑆 ∈ ( SubMgm ‘ 𝐺 ) ∧ 𝐴 ∈ ( SubMgm ‘ 𝐻 ) ) → ( 𝐴 ∈ ( SubMgm ‘ 𝐺 ) ∧ 𝐴 ⊆ 𝑆 ) ) |
| 27 |
|
simprr |
⊢ ( ( 𝑆 ∈ ( SubMgm ‘ 𝐺 ) ∧ ( 𝐴 ∈ ( SubMgm ‘ 𝐺 ) ∧ 𝐴 ⊆ 𝑆 ) ) → 𝐴 ⊆ 𝑆 ) |
| 28 |
5
|
adantr |
⊢ ( ( 𝑆 ∈ ( SubMgm ‘ 𝐺 ) ∧ ( 𝐴 ∈ ( SubMgm ‘ 𝐺 ) ∧ 𝐴 ⊆ 𝑆 ) ) → 𝑆 = ( Base ‘ 𝐻 ) ) |
| 29 |
27 28
|
sseqtrd |
⊢ ( ( 𝑆 ∈ ( SubMgm ‘ 𝐺 ) ∧ ( 𝐴 ∈ ( SubMgm ‘ 𝐺 ) ∧ 𝐴 ⊆ 𝑆 ) ) → 𝐴 ⊆ ( Base ‘ 𝐻 ) ) |
| 30 |
14
|
adantrl |
⊢ ( ( 𝑆 ∈ ( SubMgm ‘ 𝐺 ) ∧ ( 𝐴 ∈ ( SubMgm ‘ 𝐺 ) ∧ 𝐴 ⊆ 𝑆 ) ) → ( 𝐻 ↾s 𝐴 ) = ( 𝐺 ↾s 𝐴 ) ) |
| 31 |
22
|
submgmmgm |
⊢ ( 𝐴 ∈ ( SubMgm ‘ 𝐺 ) → ( 𝐺 ↾s 𝐴 ) ∈ Mgm ) |
| 32 |
31
|
ad2antrl |
⊢ ( ( 𝑆 ∈ ( SubMgm ‘ 𝐺 ) ∧ ( 𝐴 ∈ ( SubMgm ‘ 𝐺 ) ∧ 𝐴 ⊆ 𝑆 ) ) → ( 𝐺 ↾s 𝐴 ) ∈ Mgm ) |
| 33 |
30 32
|
eqeltrd |
⊢ ( ( 𝑆 ∈ ( SubMgm ‘ 𝐺 ) ∧ ( 𝐴 ∈ ( SubMgm ‘ 𝐺 ) ∧ 𝐴 ⊆ 𝑆 ) ) → ( 𝐻 ↾s 𝐴 ) ∈ Mgm ) |
| 34 |
1
|
submgmmgm |
⊢ ( 𝑆 ∈ ( SubMgm ‘ 𝐺 ) → 𝐻 ∈ Mgm ) |
| 35 |
34
|
adantr |
⊢ ( ( 𝑆 ∈ ( SubMgm ‘ 𝐺 ) ∧ ( 𝐴 ∈ ( SubMgm ‘ 𝐺 ) ∧ 𝐴 ⊆ 𝑆 ) ) → 𝐻 ∈ Mgm ) |
| 36 |
2 16
|
issubmgm2 |
⊢ ( 𝐻 ∈ Mgm → ( 𝐴 ∈ ( SubMgm ‘ 𝐻 ) ↔ ( 𝐴 ⊆ ( Base ‘ 𝐻 ) ∧ ( 𝐻 ↾s 𝐴 ) ∈ Mgm ) ) ) |
| 37 |
35 36
|
syl |
⊢ ( ( 𝑆 ∈ ( SubMgm ‘ 𝐺 ) ∧ ( 𝐴 ∈ ( SubMgm ‘ 𝐺 ) ∧ 𝐴 ⊆ 𝑆 ) ) → ( 𝐴 ∈ ( SubMgm ‘ 𝐻 ) ↔ ( 𝐴 ⊆ ( Base ‘ 𝐻 ) ∧ ( 𝐻 ↾s 𝐴 ) ∈ Mgm ) ) ) |
| 38 |
29 33 37
|
mpbir2and |
⊢ ( ( 𝑆 ∈ ( SubMgm ‘ 𝐺 ) ∧ ( 𝐴 ∈ ( SubMgm ‘ 𝐺 ) ∧ 𝐴 ⊆ 𝑆 ) ) → 𝐴 ∈ ( SubMgm ‘ 𝐻 ) ) |
| 39 |
26 38
|
impbida |
⊢ ( 𝑆 ∈ ( SubMgm ‘ 𝐺 ) → ( 𝐴 ∈ ( SubMgm ‘ 𝐻 ) ↔ ( 𝐴 ∈ ( SubMgm ‘ 𝐺 ) ∧ 𝐴 ⊆ 𝑆 ) ) ) |