| Step | Hyp | Ref | Expression | 
						
							| 1 |  | subsubrg.s | ⊢ 𝑆  =  ( 𝑅  ↾s  𝐴 ) | 
						
							| 2 |  | subrgrcl | ⊢ ( 𝐴  ∈  ( SubRing ‘ 𝑅 )  →  𝑅  ∈  Ring ) | 
						
							| 3 | 2 | adantr | ⊢ ( ( 𝐴  ∈  ( SubRing ‘ 𝑅 )  ∧  𝐵  ∈  ( SubRing ‘ 𝑆 ) )  →  𝑅  ∈  Ring ) | 
						
							| 4 |  | eqid | ⊢ ( Base ‘ 𝑆 )  =  ( Base ‘ 𝑆 ) | 
						
							| 5 | 4 | subrgss | ⊢ ( 𝐵  ∈  ( SubRing ‘ 𝑆 )  →  𝐵  ⊆  ( Base ‘ 𝑆 ) ) | 
						
							| 6 | 5 | adantl | ⊢ ( ( 𝐴  ∈  ( SubRing ‘ 𝑅 )  ∧  𝐵  ∈  ( SubRing ‘ 𝑆 ) )  →  𝐵  ⊆  ( Base ‘ 𝑆 ) ) | 
						
							| 7 | 1 | subrgbas | ⊢ ( 𝐴  ∈  ( SubRing ‘ 𝑅 )  →  𝐴  =  ( Base ‘ 𝑆 ) ) | 
						
							| 8 | 7 | adantr | ⊢ ( ( 𝐴  ∈  ( SubRing ‘ 𝑅 )  ∧  𝐵  ∈  ( SubRing ‘ 𝑆 ) )  →  𝐴  =  ( Base ‘ 𝑆 ) ) | 
						
							| 9 | 6 8 | sseqtrrd | ⊢ ( ( 𝐴  ∈  ( SubRing ‘ 𝑅 )  ∧  𝐵  ∈  ( SubRing ‘ 𝑆 ) )  →  𝐵  ⊆  𝐴 ) | 
						
							| 10 | 1 | oveq1i | ⊢ ( 𝑆  ↾s  𝐵 )  =  ( ( 𝑅  ↾s  𝐴 )  ↾s  𝐵 ) | 
						
							| 11 |  | ressabs | ⊢ ( ( 𝐴  ∈  ( SubRing ‘ 𝑅 )  ∧  𝐵  ⊆  𝐴 )  →  ( ( 𝑅  ↾s  𝐴 )  ↾s  𝐵 )  =  ( 𝑅  ↾s  𝐵 ) ) | 
						
							| 12 | 10 11 | eqtrid | ⊢ ( ( 𝐴  ∈  ( SubRing ‘ 𝑅 )  ∧  𝐵  ⊆  𝐴 )  →  ( 𝑆  ↾s  𝐵 )  =  ( 𝑅  ↾s  𝐵 ) ) | 
						
							| 13 | 9 12 | syldan | ⊢ ( ( 𝐴  ∈  ( SubRing ‘ 𝑅 )  ∧  𝐵  ∈  ( SubRing ‘ 𝑆 ) )  →  ( 𝑆  ↾s  𝐵 )  =  ( 𝑅  ↾s  𝐵 ) ) | 
						
							| 14 |  | eqid | ⊢ ( 𝑆  ↾s  𝐵 )  =  ( 𝑆  ↾s  𝐵 ) | 
						
							| 15 | 14 | subrgring | ⊢ ( 𝐵  ∈  ( SubRing ‘ 𝑆 )  →  ( 𝑆  ↾s  𝐵 )  ∈  Ring ) | 
						
							| 16 | 15 | adantl | ⊢ ( ( 𝐴  ∈  ( SubRing ‘ 𝑅 )  ∧  𝐵  ∈  ( SubRing ‘ 𝑆 ) )  →  ( 𝑆  ↾s  𝐵 )  ∈  Ring ) | 
						
							| 17 | 13 16 | eqeltrrd | ⊢ ( ( 𝐴  ∈  ( SubRing ‘ 𝑅 )  ∧  𝐵  ∈  ( SubRing ‘ 𝑆 ) )  →  ( 𝑅  ↾s  𝐵 )  ∈  Ring ) | 
						
							| 18 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 19 | 18 | subrgss | ⊢ ( 𝐴  ∈  ( SubRing ‘ 𝑅 )  →  𝐴  ⊆  ( Base ‘ 𝑅 ) ) | 
						
							| 20 | 19 | adantr | ⊢ ( ( 𝐴  ∈  ( SubRing ‘ 𝑅 )  ∧  𝐵  ∈  ( SubRing ‘ 𝑆 ) )  →  𝐴  ⊆  ( Base ‘ 𝑅 ) ) | 
						
							| 21 | 9 20 | sstrd | ⊢ ( ( 𝐴  ∈  ( SubRing ‘ 𝑅 )  ∧  𝐵  ∈  ( SubRing ‘ 𝑆 ) )  →  𝐵  ⊆  ( Base ‘ 𝑅 ) ) | 
						
							| 22 |  | eqid | ⊢ ( 1r ‘ 𝑅 )  =  ( 1r ‘ 𝑅 ) | 
						
							| 23 | 1 22 | subrg1 | ⊢ ( 𝐴  ∈  ( SubRing ‘ 𝑅 )  →  ( 1r ‘ 𝑅 )  =  ( 1r ‘ 𝑆 ) ) | 
						
							| 24 | 23 | adantr | ⊢ ( ( 𝐴  ∈  ( SubRing ‘ 𝑅 )  ∧  𝐵  ∈  ( SubRing ‘ 𝑆 ) )  →  ( 1r ‘ 𝑅 )  =  ( 1r ‘ 𝑆 ) ) | 
						
							| 25 |  | eqid | ⊢ ( 1r ‘ 𝑆 )  =  ( 1r ‘ 𝑆 ) | 
						
							| 26 | 25 | subrg1cl | ⊢ ( 𝐵  ∈  ( SubRing ‘ 𝑆 )  →  ( 1r ‘ 𝑆 )  ∈  𝐵 ) | 
						
							| 27 | 26 | adantl | ⊢ ( ( 𝐴  ∈  ( SubRing ‘ 𝑅 )  ∧  𝐵  ∈  ( SubRing ‘ 𝑆 ) )  →  ( 1r ‘ 𝑆 )  ∈  𝐵 ) | 
						
							| 28 | 24 27 | eqeltrd | ⊢ ( ( 𝐴  ∈  ( SubRing ‘ 𝑅 )  ∧  𝐵  ∈  ( SubRing ‘ 𝑆 ) )  →  ( 1r ‘ 𝑅 )  ∈  𝐵 ) | 
						
							| 29 | 21 28 | jca | ⊢ ( ( 𝐴  ∈  ( SubRing ‘ 𝑅 )  ∧  𝐵  ∈  ( SubRing ‘ 𝑆 ) )  →  ( 𝐵  ⊆  ( Base ‘ 𝑅 )  ∧  ( 1r ‘ 𝑅 )  ∈  𝐵 ) ) | 
						
							| 30 | 18 22 | issubrg | ⊢ ( 𝐵  ∈  ( SubRing ‘ 𝑅 )  ↔  ( ( 𝑅  ∈  Ring  ∧  ( 𝑅  ↾s  𝐵 )  ∈  Ring )  ∧  ( 𝐵  ⊆  ( Base ‘ 𝑅 )  ∧  ( 1r ‘ 𝑅 )  ∈  𝐵 ) ) ) | 
						
							| 31 | 3 17 29 30 | syl21anbrc | ⊢ ( ( 𝐴  ∈  ( SubRing ‘ 𝑅 )  ∧  𝐵  ∈  ( SubRing ‘ 𝑆 ) )  →  𝐵  ∈  ( SubRing ‘ 𝑅 ) ) | 
						
							| 32 | 31 9 | jca | ⊢ ( ( 𝐴  ∈  ( SubRing ‘ 𝑅 )  ∧  𝐵  ∈  ( SubRing ‘ 𝑆 ) )  →  ( 𝐵  ∈  ( SubRing ‘ 𝑅 )  ∧  𝐵  ⊆  𝐴 ) ) | 
						
							| 33 | 1 | subrgring | ⊢ ( 𝐴  ∈  ( SubRing ‘ 𝑅 )  →  𝑆  ∈  Ring ) | 
						
							| 34 | 33 | adantr | ⊢ ( ( 𝐴  ∈  ( SubRing ‘ 𝑅 )  ∧  ( 𝐵  ∈  ( SubRing ‘ 𝑅 )  ∧  𝐵  ⊆  𝐴 ) )  →  𝑆  ∈  Ring ) | 
						
							| 35 | 12 | adantrl | ⊢ ( ( 𝐴  ∈  ( SubRing ‘ 𝑅 )  ∧  ( 𝐵  ∈  ( SubRing ‘ 𝑅 )  ∧  𝐵  ⊆  𝐴 ) )  →  ( 𝑆  ↾s  𝐵 )  =  ( 𝑅  ↾s  𝐵 ) ) | 
						
							| 36 |  | eqid | ⊢ ( 𝑅  ↾s  𝐵 )  =  ( 𝑅  ↾s  𝐵 ) | 
						
							| 37 | 36 | subrgring | ⊢ ( 𝐵  ∈  ( SubRing ‘ 𝑅 )  →  ( 𝑅  ↾s  𝐵 )  ∈  Ring ) | 
						
							| 38 | 37 | ad2antrl | ⊢ ( ( 𝐴  ∈  ( SubRing ‘ 𝑅 )  ∧  ( 𝐵  ∈  ( SubRing ‘ 𝑅 )  ∧  𝐵  ⊆  𝐴 ) )  →  ( 𝑅  ↾s  𝐵 )  ∈  Ring ) | 
						
							| 39 | 35 38 | eqeltrd | ⊢ ( ( 𝐴  ∈  ( SubRing ‘ 𝑅 )  ∧  ( 𝐵  ∈  ( SubRing ‘ 𝑅 )  ∧  𝐵  ⊆  𝐴 ) )  →  ( 𝑆  ↾s  𝐵 )  ∈  Ring ) | 
						
							| 40 |  | simprr | ⊢ ( ( 𝐴  ∈  ( SubRing ‘ 𝑅 )  ∧  ( 𝐵  ∈  ( SubRing ‘ 𝑅 )  ∧  𝐵  ⊆  𝐴 ) )  →  𝐵  ⊆  𝐴 ) | 
						
							| 41 | 7 | adantr | ⊢ ( ( 𝐴  ∈  ( SubRing ‘ 𝑅 )  ∧  ( 𝐵  ∈  ( SubRing ‘ 𝑅 )  ∧  𝐵  ⊆  𝐴 ) )  →  𝐴  =  ( Base ‘ 𝑆 ) ) | 
						
							| 42 | 40 41 | sseqtrd | ⊢ ( ( 𝐴  ∈  ( SubRing ‘ 𝑅 )  ∧  ( 𝐵  ∈  ( SubRing ‘ 𝑅 )  ∧  𝐵  ⊆  𝐴 ) )  →  𝐵  ⊆  ( Base ‘ 𝑆 ) ) | 
						
							| 43 | 23 | adantr | ⊢ ( ( 𝐴  ∈  ( SubRing ‘ 𝑅 )  ∧  ( 𝐵  ∈  ( SubRing ‘ 𝑅 )  ∧  𝐵  ⊆  𝐴 ) )  →  ( 1r ‘ 𝑅 )  =  ( 1r ‘ 𝑆 ) ) | 
						
							| 44 | 22 | subrg1cl | ⊢ ( 𝐵  ∈  ( SubRing ‘ 𝑅 )  →  ( 1r ‘ 𝑅 )  ∈  𝐵 ) | 
						
							| 45 | 44 | ad2antrl | ⊢ ( ( 𝐴  ∈  ( SubRing ‘ 𝑅 )  ∧  ( 𝐵  ∈  ( SubRing ‘ 𝑅 )  ∧  𝐵  ⊆  𝐴 ) )  →  ( 1r ‘ 𝑅 )  ∈  𝐵 ) | 
						
							| 46 | 43 45 | eqeltrrd | ⊢ ( ( 𝐴  ∈  ( SubRing ‘ 𝑅 )  ∧  ( 𝐵  ∈  ( SubRing ‘ 𝑅 )  ∧  𝐵  ⊆  𝐴 ) )  →  ( 1r ‘ 𝑆 )  ∈  𝐵 ) | 
						
							| 47 | 42 46 | jca | ⊢ ( ( 𝐴  ∈  ( SubRing ‘ 𝑅 )  ∧  ( 𝐵  ∈  ( SubRing ‘ 𝑅 )  ∧  𝐵  ⊆  𝐴 ) )  →  ( 𝐵  ⊆  ( Base ‘ 𝑆 )  ∧  ( 1r ‘ 𝑆 )  ∈  𝐵 ) ) | 
						
							| 48 | 4 25 | issubrg | ⊢ ( 𝐵  ∈  ( SubRing ‘ 𝑆 )  ↔  ( ( 𝑆  ∈  Ring  ∧  ( 𝑆  ↾s  𝐵 )  ∈  Ring )  ∧  ( 𝐵  ⊆  ( Base ‘ 𝑆 )  ∧  ( 1r ‘ 𝑆 )  ∈  𝐵 ) ) ) | 
						
							| 49 | 34 39 47 48 | syl21anbrc | ⊢ ( ( 𝐴  ∈  ( SubRing ‘ 𝑅 )  ∧  ( 𝐵  ∈  ( SubRing ‘ 𝑅 )  ∧  𝐵  ⊆  𝐴 ) )  →  𝐵  ∈  ( SubRing ‘ 𝑆 ) ) | 
						
							| 50 | 32 49 | impbida | ⊢ ( 𝐴  ∈  ( SubRing ‘ 𝑅 )  →  ( 𝐵  ∈  ( SubRing ‘ 𝑆 )  ↔  ( 𝐵  ∈  ( SubRing ‘ 𝑅 )  ∧  𝐵  ⊆  𝐴 ) ) ) |