Step |
Hyp |
Ref |
Expression |
1 |
|
subsubrg.s |
⊢ 𝑆 = ( 𝑅 ↾s 𝐴 ) |
2 |
|
subrgrcl |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝑅 ∈ Ring ) |
3 |
2
|
adantr |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐵 ∈ ( SubRing ‘ 𝑆 ) ) → 𝑅 ∈ Ring ) |
4 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
5 |
4
|
subrgss |
⊢ ( 𝐵 ∈ ( SubRing ‘ 𝑆 ) → 𝐵 ⊆ ( Base ‘ 𝑆 ) ) |
6 |
5
|
adantl |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐵 ∈ ( SubRing ‘ 𝑆 ) ) → 𝐵 ⊆ ( Base ‘ 𝑆 ) ) |
7 |
1
|
subrgbas |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝐴 = ( Base ‘ 𝑆 ) ) |
8 |
7
|
adantr |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐵 ∈ ( SubRing ‘ 𝑆 ) ) → 𝐴 = ( Base ‘ 𝑆 ) ) |
9 |
6 8
|
sseqtrrd |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐵 ∈ ( SubRing ‘ 𝑆 ) ) → 𝐵 ⊆ 𝐴 ) |
10 |
1
|
oveq1i |
⊢ ( 𝑆 ↾s 𝐵 ) = ( ( 𝑅 ↾s 𝐴 ) ↾s 𝐵 ) |
11 |
|
ressabs |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐵 ⊆ 𝐴 ) → ( ( 𝑅 ↾s 𝐴 ) ↾s 𝐵 ) = ( 𝑅 ↾s 𝐵 ) ) |
12 |
10 11
|
eqtrid |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐵 ⊆ 𝐴 ) → ( 𝑆 ↾s 𝐵 ) = ( 𝑅 ↾s 𝐵 ) ) |
13 |
9 12
|
syldan |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐵 ∈ ( SubRing ‘ 𝑆 ) ) → ( 𝑆 ↾s 𝐵 ) = ( 𝑅 ↾s 𝐵 ) ) |
14 |
|
eqid |
⊢ ( 𝑆 ↾s 𝐵 ) = ( 𝑆 ↾s 𝐵 ) |
15 |
14
|
subrgring |
⊢ ( 𝐵 ∈ ( SubRing ‘ 𝑆 ) → ( 𝑆 ↾s 𝐵 ) ∈ Ring ) |
16 |
15
|
adantl |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐵 ∈ ( SubRing ‘ 𝑆 ) ) → ( 𝑆 ↾s 𝐵 ) ∈ Ring ) |
17 |
13 16
|
eqeltrrd |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐵 ∈ ( SubRing ‘ 𝑆 ) ) → ( 𝑅 ↾s 𝐵 ) ∈ Ring ) |
18 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
19 |
18
|
subrgss |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝐴 ⊆ ( Base ‘ 𝑅 ) ) |
20 |
19
|
adantr |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐵 ∈ ( SubRing ‘ 𝑆 ) ) → 𝐴 ⊆ ( Base ‘ 𝑅 ) ) |
21 |
9 20
|
sstrd |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐵 ∈ ( SubRing ‘ 𝑆 ) ) → 𝐵 ⊆ ( Base ‘ 𝑅 ) ) |
22 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
23 |
1 22
|
subrg1 |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑆 ) ) |
24 |
23
|
adantr |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐵 ∈ ( SubRing ‘ 𝑆 ) ) → ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑆 ) ) |
25 |
|
eqid |
⊢ ( 1r ‘ 𝑆 ) = ( 1r ‘ 𝑆 ) |
26 |
25
|
subrg1cl |
⊢ ( 𝐵 ∈ ( SubRing ‘ 𝑆 ) → ( 1r ‘ 𝑆 ) ∈ 𝐵 ) |
27 |
26
|
adantl |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐵 ∈ ( SubRing ‘ 𝑆 ) ) → ( 1r ‘ 𝑆 ) ∈ 𝐵 ) |
28 |
24 27
|
eqeltrd |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐵 ∈ ( SubRing ‘ 𝑆 ) ) → ( 1r ‘ 𝑅 ) ∈ 𝐵 ) |
29 |
21 28
|
jca |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐵 ∈ ( SubRing ‘ 𝑆 ) ) → ( 𝐵 ⊆ ( Base ‘ 𝑅 ) ∧ ( 1r ‘ 𝑅 ) ∈ 𝐵 ) ) |
30 |
18 22
|
issubrg |
⊢ ( 𝐵 ∈ ( SubRing ‘ 𝑅 ) ↔ ( ( 𝑅 ∈ Ring ∧ ( 𝑅 ↾s 𝐵 ) ∈ Ring ) ∧ ( 𝐵 ⊆ ( Base ‘ 𝑅 ) ∧ ( 1r ‘ 𝑅 ) ∈ 𝐵 ) ) ) |
31 |
3 17 29 30
|
syl21anbrc |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐵 ∈ ( SubRing ‘ 𝑆 ) ) → 𝐵 ∈ ( SubRing ‘ 𝑅 ) ) |
32 |
31 9
|
jca |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐵 ∈ ( SubRing ‘ 𝑆 ) ) → ( 𝐵 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐵 ⊆ 𝐴 ) ) |
33 |
1
|
subrgring |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝑆 ∈ Ring ) |
34 |
33
|
adantr |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝐵 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐵 ⊆ 𝐴 ) ) → 𝑆 ∈ Ring ) |
35 |
12
|
adantrl |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝐵 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐵 ⊆ 𝐴 ) ) → ( 𝑆 ↾s 𝐵 ) = ( 𝑅 ↾s 𝐵 ) ) |
36 |
|
eqid |
⊢ ( 𝑅 ↾s 𝐵 ) = ( 𝑅 ↾s 𝐵 ) |
37 |
36
|
subrgring |
⊢ ( 𝐵 ∈ ( SubRing ‘ 𝑅 ) → ( 𝑅 ↾s 𝐵 ) ∈ Ring ) |
38 |
37
|
ad2antrl |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝐵 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐵 ⊆ 𝐴 ) ) → ( 𝑅 ↾s 𝐵 ) ∈ Ring ) |
39 |
35 38
|
eqeltrd |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝐵 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐵 ⊆ 𝐴 ) ) → ( 𝑆 ↾s 𝐵 ) ∈ Ring ) |
40 |
|
simprr |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝐵 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐵 ⊆ 𝐴 ) ) → 𝐵 ⊆ 𝐴 ) |
41 |
7
|
adantr |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝐵 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐵 ⊆ 𝐴 ) ) → 𝐴 = ( Base ‘ 𝑆 ) ) |
42 |
40 41
|
sseqtrd |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝐵 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐵 ⊆ 𝐴 ) ) → 𝐵 ⊆ ( Base ‘ 𝑆 ) ) |
43 |
23
|
adantr |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝐵 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐵 ⊆ 𝐴 ) ) → ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑆 ) ) |
44 |
22
|
subrg1cl |
⊢ ( 𝐵 ∈ ( SubRing ‘ 𝑅 ) → ( 1r ‘ 𝑅 ) ∈ 𝐵 ) |
45 |
44
|
ad2antrl |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝐵 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐵 ⊆ 𝐴 ) ) → ( 1r ‘ 𝑅 ) ∈ 𝐵 ) |
46 |
43 45
|
eqeltrrd |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝐵 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐵 ⊆ 𝐴 ) ) → ( 1r ‘ 𝑆 ) ∈ 𝐵 ) |
47 |
42 46
|
jca |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝐵 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐵 ⊆ 𝐴 ) ) → ( 𝐵 ⊆ ( Base ‘ 𝑆 ) ∧ ( 1r ‘ 𝑆 ) ∈ 𝐵 ) ) |
48 |
4 25
|
issubrg |
⊢ ( 𝐵 ∈ ( SubRing ‘ 𝑆 ) ↔ ( ( 𝑆 ∈ Ring ∧ ( 𝑆 ↾s 𝐵 ) ∈ Ring ) ∧ ( 𝐵 ⊆ ( Base ‘ 𝑆 ) ∧ ( 1r ‘ 𝑆 ) ∈ 𝐵 ) ) ) |
49 |
34 39 47 48
|
syl21anbrc |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝐵 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐵 ⊆ 𝐴 ) ) → 𝐵 ∈ ( SubRing ‘ 𝑆 ) ) |
50 |
32 49
|
impbida |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( 𝐵 ∈ ( SubRing ‘ 𝑆 ) ↔ ( 𝐵 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐵 ⊆ 𝐴 ) ) ) |