| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subsubrg.s |
⊢ 𝑆 = ( 𝑅 ↾s 𝐴 ) |
| 2 |
1
|
subsubrg |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( 𝑎 ∈ ( SubRing ‘ 𝑆 ) ↔ ( 𝑎 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑎 ⊆ 𝐴 ) ) ) |
| 3 |
|
elin |
⊢ ( 𝑎 ∈ ( ( SubRing ‘ 𝑅 ) ∩ 𝒫 𝐴 ) ↔ ( 𝑎 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑎 ∈ 𝒫 𝐴 ) ) |
| 4 |
|
velpw |
⊢ ( 𝑎 ∈ 𝒫 𝐴 ↔ 𝑎 ⊆ 𝐴 ) |
| 5 |
4
|
anbi2i |
⊢ ( ( 𝑎 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑎 ∈ 𝒫 𝐴 ) ↔ ( 𝑎 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑎 ⊆ 𝐴 ) ) |
| 6 |
3 5
|
bitr2i |
⊢ ( ( 𝑎 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑎 ⊆ 𝐴 ) ↔ 𝑎 ∈ ( ( SubRing ‘ 𝑅 ) ∩ 𝒫 𝐴 ) ) |
| 7 |
2 6
|
bitrdi |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( 𝑎 ∈ ( SubRing ‘ 𝑆 ) ↔ 𝑎 ∈ ( ( SubRing ‘ 𝑅 ) ∩ 𝒫 𝐴 ) ) ) |
| 8 |
7
|
eqrdv |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( SubRing ‘ 𝑆 ) = ( ( SubRing ‘ 𝑅 ) ∩ 𝒫 𝐴 ) ) |