Step |
Hyp |
Ref |
Expression |
1 |
|
subsubrng.s |
⊢ 𝑆 = ( 𝑅 ↾s 𝐴 ) |
2 |
|
subrngrcl |
⊢ ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) → 𝑅 ∈ Rng ) |
3 |
2
|
adantr |
⊢ ( ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) ∧ 𝐵 ∈ ( SubRng ‘ 𝑆 ) ) → 𝑅 ∈ Rng ) |
4 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
5 |
4
|
subrngss |
⊢ ( 𝐵 ∈ ( SubRng ‘ 𝑆 ) → 𝐵 ⊆ ( Base ‘ 𝑆 ) ) |
6 |
5
|
adantl |
⊢ ( ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) ∧ 𝐵 ∈ ( SubRng ‘ 𝑆 ) ) → 𝐵 ⊆ ( Base ‘ 𝑆 ) ) |
7 |
1
|
subrngbas |
⊢ ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) → 𝐴 = ( Base ‘ 𝑆 ) ) |
8 |
7
|
adantr |
⊢ ( ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) ∧ 𝐵 ∈ ( SubRng ‘ 𝑆 ) ) → 𝐴 = ( Base ‘ 𝑆 ) ) |
9 |
6 8
|
sseqtrrd |
⊢ ( ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) ∧ 𝐵 ∈ ( SubRng ‘ 𝑆 ) ) → 𝐵 ⊆ 𝐴 ) |
10 |
1
|
oveq1i |
⊢ ( 𝑆 ↾s 𝐵 ) = ( ( 𝑅 ↾s 𝐴 ) ↾s 𝐵 ) |
11 |
|
ressabs |
⊢ ( ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) ∧ 𝐵 ⊆ 𝐴 ) → ( ( 𝑅 ↾s 𝐴 ) ↾s 𝐵 ) = ( 𝑅 ↾s 𝐵 ) ) |
12 |
10 11
|
eqtrid |
⊢ ( ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) ∧ 𝐵 ⊆ 𝐴 ) → ( 𝑆 ↾s 𝐵 ) = ( 𝑅 ↾s 𝐵 ) ) |
13 |
9 12
|
syldan |
⊢ ( ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) ∧ 𝐵 ∈ ( SubRng ‘ 𝑆 ) ) → ( 𝑆 ↾s 𝐵 ) = ( 𝑅 ↾s 𝐵 ) ) |
14 |
|
eqid |
⊢ ( 𝑆 ↾s 𝐵 ) = ( 𝑆 ↾s 𝐵 ) |
15 |
14
|
subrngrng |
⊢ ( 𝐵 ∈ ( SubRng ‘ 𝑆 ) → ( 𝑆 ↾s 𝐵 ) ∈ Rng ) |
16 |
15
|
adantl |
⊢ ( ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) ∧ 𝐵 ∈ ( SubRng ‘ 𝑆 ) ) → ( 𝑆 ↾s 𝐵 ) ∈ Rng ) |
17 |
13 16
|
eqeltrrd |
⊢ ( ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) ∧ 𝐵 ∈ ( SubRng ‘ 𝑆 ) ) → ( 𝑅 ↾s 𝐵 ) ∈ Rng ) |
18 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
19 |
18
|
subrngss |
⊢ ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) → 𝐴 ⊆ ( Base ‘ 𝑅 ) ) |
20 |
19
|
adantr |
⊢ ( ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) ∧ 𝐵 ∈ ( SubRng ‘ 𝑆 ) ) → 𝐴 ⊆ ( Base ‘ 𝑅 ) ) |
21 |
9 20
|
sstrd |
⊢ ( ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) ∧ 𝐵 ∈ ( SubRng ‘ 𝑆 ) ) → 𝐵 ⊆ ( Base ‘ 𝑅 ) ) |
22 |
18
|
issubrng |
⊢ ( 𝐵 ∈ ( SubRng ‘ 𝑅 ) ↔ ( 𝑅 ∈ Rng ∧ ( 𝑅 ↾s 𝐵 ) ∈ Rng ∧ 𝐵 ⊆ ( Base ‘ 𝑅 ) ) ) |
23 |
3 17 21 22
|
syl3anbrc |
⊢ ( ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) ∧ 𝐵 ∈ ( SubRng ‘ 𝑆 ) ) → 𝐵 ∈ ( SubRng ‘ 𝑅 ) ) |
24 |
23 9
|
jca |
⊢ ( ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) ∧ 𝐵 ∈ ( SubRng ‘ 𝑆 ) ) → ( 𝐵 ∈ ( SubRng ‘ 𝑅 ) ∧ 𝐵 ⊆ 𝐴 ) ) |
25 |
1
|
subrngrng |
⊢ ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) → 𝑆 ∈ Rng ) |
26 |
25
|
adantr |
⊢ ( ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) ∧ ( 𝐵 ∈ ( SubRng ‘ 𝑅 ) ∧ 𝐵 ⊆ 𝐴 ) ) → 𝑆 ∈ Rng ) |
27 |
12
|
adantrl |
⊢ ( ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) ∧ ( 𝐵 ∈ ( SubRng ‘ 𝑅 ) ∧ 𝐵 ⊆ 𝐴 ) ) → ( 𝑆 ↾s 𝐵 ) = ( 𝑅 ↾s 𝐵 ) ) |
28 |
|
eqid |
⊢ ( 𝑅 ↾s 𝐵 ) = ( 𝑅 ↾s 𝐵 ) |
29 |
28
|
subrngrng |
⊢ ( 𝐵 ∈ ( SubRng ‘ 𝑅 ) → ( 𝑅 ↾s 𝐵 ) ∈ Rng ) |
30 |
29
|
ad2antrl |
⊢ ( ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) ∧ ( 𝐵 ∈ ( SubRng ‘ 𝑅 ) ∧ 𝐵 ⊆ 𝐴 ) ) → ( 𝑅 ↾s 𝐵 ) ∈ Rng ) |
31 |
27 30
|
eqeltrd |
⊢ ( ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) ∧ ( 𝐵 ∈ ( SubRng ‘ 𝑅 ) ∧ 𝐵 ⊆ 𝐴 ) ) → ( 𝑆 ↾s 𝐵 ) ∈ Rng ) |
32 |
|
simprr |
⊢ ( ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) ∧ ( 𝐵 ∈ ( SubRng ‘ 𝑅 ) ∧ 𝐵 ⊆ 𝐴 ) ) → 𝐵 ⊆ 𝐴 ) |
33 |
7
|
adantr |
⊢ ( ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) ∧ ( 𝐵 ∈ ( SubRng ‘ 𝑅 ) ∧ 𝐵 ⊆ 𝐴 ) ) → 𝐴 = ( Base ‘ 𝑆 ) ) |
34 |
32 33
|
sseqtrd |
⊢ ( ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) ∧ ( 𝐵 ∈ ( SubRng ‘ 𝑅 ) ∧ 𝐵 ⊆ 𝐴 ) ) → 𝐵 ⊆ ( Base ‘ 𝑆 ) ) |
35 |
4
|
issubrng |
⊢ ( 𝐵 ∈ ( SubRng ‘ 𝑆 ) ↔ ( 𝑆 ∈ Rng ∧ ( 𝑆 ↾s 𝐵 ) ∈ Rng ∧ 𝐵 ⊆ ( Base ‘ 𝑆 ) ) ) |
36 |
26 31 34 35
|
syl3anbrc |
⊢ ( ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) ∧ ( 𝐵 ∈ ( SubRng ‘ 𝑅 ) ∧ 𝐵 ⊆ 𝐴 ) ) → 𝐵 ∈ ( SubRng ‘ 𝑆 ) ) |
37 |
24 36
|
impbida |
⊢ ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) → ( 𝐵 ∈ ( SubRng ‘ 𝑆 ) ↔ ( 𝐵 ∈ ( SubRng ‘ 𝑅 ) ∧ 𝐵 ⊆ 𝐴 ) ) ) |