Metamath Proof Explorer


Theorem subsubs2d

Description: Law for double surreal subtraction. (Contributed by Scott Fenton, 16-Apr-2025)

Ref Expression
Hypotheses subsubs4d.1 ( 𝜑𝐴 No )
subsubs4d.2 ( 𝜑𝐵 No )
subsubs4d.3 ( 𝜑𝐶 No )
Assertion subsubs2d ( 𝜑 → ( 𝐴 -s ( 𝐵 -s 𝐶 ) ) = ( 𝐴 +s ( 𝐶 -s 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 subsubs4d.1 ( 𝜑𝐴 No )
2 subsubs4d.2 ( 𝜑𝐵 No )
3 subsubs4d.3 ( 𝜑𝐶 No )
4 2 3 subscld ( 𝜑 → ( 𝐵 -s 𝐶 ) ∈ No )
5 1 4 subsvald ( 𝜑 → ( 𝐴 -s ( 𝐵 -s 𝐶 ) ) = ( 𝐴 +s ( -us ‘ ( 𝐵 -s 𝐶 ) ) ) )
6 2 3 negsubsdi2d ( 𝜑 → ( -us ‘ ( 𝐵 -s 𝐶 ) ) = ( 𝐶 -s 𝐵 ) )
7 6 oveq2d ( 𝜑 → ( 𝐴 +s ( -us ‘ ( 𝐵 -s 𝐶 ) ) ) = ( 𝐴 +s ( 𝐶 -s 𝐵 ) ) )
8 5 7 eqtrd ( 𝜑 → ( 𝐴 -s ( 𝐵 -s 𝐶 ) ) = ( 𝐴 +s ( 𝐶 -s 𝐵 ) ) )