Metamath Proof Explorer


Theorem subsubs4d

Description: Law for double surreal subtraction. (Contributed by Scott Fenton, 9-Mar-2025)

Ref Expression
Hypotheses subsubs4d.1 ( 𝜑𝐴 No )
subsubs4d.2 ( 𝜑𝐵 No )
subsubs4d.3 ( 𝜑𝐶 No )
Assertion subsubs4d ( 𝜑 → ( ( 𝐴 -s 𝐵 ) -s 𝐶 ) = ( 𝐴 -s ( 𝐵 +s 𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 subsubs4d.1 ( 𝜑𝐴 No )
2 subsubs4d.2 ( 𝜑𝐵 No )
3 subsubs4d.3 ( 𝜑𝐶 No )
4 2 negscld ( 𝜑 → ( -us𝐵 ) ∈ No )
5 3 negscld ( 𝜑 → ( -us𝐶 ) ∈ No )
6 1 4 5 addsassd ( 𝜑 → ( ( 𝐴 +s ( -us𝐵 ) ) +s ( -us𝐶 ) ) = ( 𝐴 +s ( ( -us𝐵 ) +s ( -us𝐶 ) ) ) )
7 1 2 subsvald ( 𝜑 → ( 𝐴 -s 𝐵 ) = ( 𝐴 +s ( -us𝐵 ) ) )
8 7 oveq1d ( 𝜑 → ( ( 𝐴 -s 𝐵 ) -s 𝐶 ) = ( ( 𝐴 +s ( -us𝐵 ) ) -s 𝐶 ) )
9 1 4 addscld ( 𝜑 → ( 𝐴 +s ( -us𝐵 ) ) ∈ No )
10 9 3 subsvald ( 𝜑 → ( ( 𝐴 +s ( -us𝐵 ) ) -s 𝐶 ) = ( ( 𝐴 +s ( -us𝐵 ) ) +s ( -us𝐶 ) ) )
11 8 10 eqtrd ( 𝜑 → ( ( 𝐴 -s 𝐵 ) -s 𝐶 ) = ( ( 𝐴 +s ( -us𝐵 ) ) +s ( -us𝐶 ) ) )
12 2 3 addscld ( 𝜑 → ( 𝐵 +s 𝐶 ) ∈ No )
13 1 12 subsvald ( 𝜑 → ( 𝐴 -s ( 𝐵 +s 𝐶 ) ) = ( 𝐴 +s ( -us ‘ ( 𝐵 +s 𝐶 ) ) ) )
14 negsdi ( ( 𝐵 No 𝐶 No ) → ( -us ‘ ( 𝐵 +s 𝐶 ) ) = ( ( -us𝐵 ) +s ( -us𝐶 ) ) )
15 2 3 14 syl2anc ( 𝜑 → ( -us ‘ ( 𝐵 +s 𝐶 ) ) = ( ( -us𝐵 ) +s ( -us𝐶 ) ) )
16 15 oveq2d ( 𝜑 → ( 𝐴 +s ( -us ‘ ( 𝐵 +s 𝐶 ) ) ) = ( 𝐴 +s ( ( -us𝐵 ) +s ( -us𝐶 ) ) ) )
17 13 16 eqtrd ( 𝜑 → ( 𝐴 -s ( 𝐵 +s 𝐶 ) ) = ( 𝐴 +s ( ( -us𝐵 ) +s ( -us𝐶 ) ) ) )
18 6 11 17 3eqtr4d ( 𝜑 → ( ( 𝐴 -s 𝐵 ) -s 𝐶 ) = ( 𝐴 -s ( 𝐵 +s 𝐶 ) ) )