Metamath Proof Explorer


Theorem subsval

Description: The value of surreal subtraction. (Contributed by Scott Fenton, 3-Feb-2025)

Ref Expression
Assertion subsval ( ( 𝐴 No 𝐵 No ) → ( 𝐴 -s 𝐵 ) = ( 𝐴 +s ( -us𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 oveq1 ( 𝑥 = 𝐴 → ( 𝑥 +s ( -us𝑦 ) ) = ( 𝐴 +s ( -us𝑦 ) ) )
2 fveq2 ( 𝑦 = 𝐵 → ( -us𝑦 ) = ( -us𝐵 ) )
3 2 oveq2d ( 𝑦 = 𝐵 → ( 𝐴 +s ( -us𝑦 ) ) = ( 𝐴 +s ( -us𝐵 ) ) )
4 df-subs -s = ( 𝑥 No , 𝑦 No ↦ ( 𝑥 +s ( -us𝑦 ) ) )
5 ovex ( 𝐴 +s ( -us𝐵 ) ) ∈ V
6 1 3 4 5 ovmpo ( ( 𝐴 No 𝐵 No ) → ( 𝐴 -s 𝐵 ) = ( 𝐴 +s ( -us𝐵 ) ) )