Description: The value of surreal subtraction. (Contributed by Scott Fenton, 3-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | subsval | ⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝐴 -s 𝐵 ) = ( 𝐴 +s ( -us ‘ 𝐵 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 +s ( -us ‘ 𝑦 ) ) = ( 𝐴 +s ( -us ‘ 𝑦 ) ) ) | |
2 | fveq2 | ⊢ ( 𝑦 = 𝐵 → ( -us ‘ 𝑦 ) = ( -us ‘ 𝐵 ) ) | |
3 | 2 | oveq2d | ⊢ ( 𝑦 = 𝐵 → ( 𝐴 +s ( -us ‘ 𝑦 ) ) = ( 𝐴 +s ( -us ‘ 𝐵 ) ) ) |
4 | df-subs | ⊢ -s = ( 𝑥 ∈ No , 𝑦 ∈ No ↦ ( 𝑥 +s ( -us ‘ 𝑦 ) ) ) | |
5 | ovex | ⊢ ( 𝐴 +s ( -us ‘ 𝐵 ) ) ∈ V | |
6 | 1 3 4 5 | ovmpo | ⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝐴 -s 𝐵 ) = ( 𝐴 +s ( -us ‘ 𝐵 ) ) ) |