Description: The value of surreal subtraction. (Contributed by Scott Fenton, 3-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | subsval | ⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝐴 -s 𝐵 ) = ( 𝐴 +s ( -us ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 +s ( -us ‘ 𝑦 ) ) = ( 𝐴 +s ( -us ‘ 𝑦 ) ) ) | |
| 2 | fveq2 | ⊢ ( 𝑦 = 𝐵 → ( -us ‘ 𝑦 ) = ( -us ‘ 𝐵 ) ) | |
| 3 | 2 | oveq2d | ⊢ ( 𝑦 = 𝐵 → ( 𝐴 +s ( -us ‘ 𝑦 ) ) = ( 𝐴 +s ( -us ‘ 𝐵 ) ) ) |
| 4 | df-subs | ⊢ -s = ( 𝑥 ∈ No , 𝑦 ∈ No ↦ ( 𝑥 +s ( -us ‘ 𝑦 ) ) ) | |
| 5 | ovex | ⊢ ( 𝐴 +s ( -us ‘ 𝐵 ) ) ∈ V | |
| 6 | 1 3 4 5 | ovmpo | ⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝐴 -s 𝐵 ) = ( 𝐴 +s ( -us ‘ 𝐵 ) ) ) |