Metamath Proof Explorer
Description: The value of surreal subtraction. (Contributed by Scott Fenton, 5-Feb-2025)
|
|
Ref |
Expression |
|
Hypotheses |
subsvald.1 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
|
|
subsvald.2 |
⊢ ( 𝜑 → 𝐵 ∈ No ) |
|
Assertion |
subsvald |
⊢ ( 𝜑 → ( 𝐴 -s 𝐵 ) = ( 𝐴 +s ( -us ‘ 𝐵 ) ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
subsvald.1 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
2 |
|
subsvald.2 |
⊢ ( 𝜑 → 𝐵 ∈ No ) |
3 |
|
subsval |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝐴 -s 𝐵 ) = ( 𝐴 +s ( -us ‘ 𝐵 ) ) ) |
4 |
1 2 3
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 -s 𝐵 ) = ( 𝐴 +s ( -us ‘ 𝐵 ) ) ) |