Metamath Proof Explorer


Theorem subsvald

Description: The value of surreal subtraction. (Contributed by Scott Fenton, 5-Feb-2025)

Ref Expression
Hypotheses subsvald.1 ( 𝜑𝐴 No )
subsvald.2 ( 𝜑𝐵 No )
Assertion subsvald ( 𝜑 → ( 𝐴 -s 𝐵 ) = ( 𝐴 +s ( -us𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 subsvald.1 ( 𝜑𝐴 No )
2 subsvald.2 ( 𝜑𝐵 No )
3 subsval ( ( 𝐴 No 𝐵 No ) → ( 𝐴 -s 𝐵 ) = ( 𝐴 +s ( -us𝐵 ) ) )
4 1 2 3 syl2anc ( 𝜑 → ( 𝐴 -s 𝐵 ) = ( 𝐴 +s ( -us𝐵 ) ) )