Step |
Hyp |
Ref |
Expression |
1 |
|
subthinc.1 |
⊢ 𝐷 = ( 𝐶 ↾cat 𝐽 ) |
2 |
|
subthinc.j |
⊢ ( 𝜑 → 𝐽 ∈ ( Subcat ‘ 𝐶 ) ) |
3 |
|
subthinc.c |
⊢ ( 𝜑 → 𝐶 ∈ ThinCat ) |
4 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
5 |
|
eqidd |
⊢ ( 𝜑 → dom dom 𝐽 = dom dom 𝐽 ) |
6 |
2 5
|
subcfn |
⊢ ( 𝜑 → 𝐽 Fn ( dom dom 𝐽 × dom dom 𝐽 ) ) |
7 |
2 6 4
|
subcss1 |
⊢ ( 𝜑 → dom dom 𝐽 ⊆ ( Base ‘ 𝐶 ) ) |
8 |
1 4 3 6 7
|
rescbas |
⊢ ( 𝜑 → dom dom 𝐽 = ( Base ‘ 𝐷 ) ) |
9 |
1 4 3 6 7
|
reschom |
⊢ ( 𝜑 → 𝐽 = ( Hom ‘ 𝐷 ) ) |
10 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ dom dom 𝐽 ∧ 𝑦 ∈ dom dom 𝐽 ) ) → 𝐽 ∈ ( Subcat ‘ 𝐶 ) ) |
11 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ dom dom 𝐽 ∧ 𝑦 ∈ dom dom 𝐽 ) ) → 𝐽 Fn ( dom dom 𝐽 × dom dom 𝐽 ) ) |
12 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
13 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ dom dom 𝐽 ∧ 𝑦 ∈ dom dom 𝐽 ) ) → 𝑥 ∈ dom dom 𝐽 ) |
14 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ dom dom 𝐽 ∧ 𝑦 ∈ dom dom 𝐽 ) ) → 𝑦 ∈ dom dom 𝐽 ) |
15 |
10 11 12 13 14
|
subcss2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ dom dom 𝐽 ∧ 𝑦 ∈ dom dom 𝐽 ) ) → ( 𝑥 𝐽 𝑦 ) ⊆ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) |
16 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ dom dom 𝐽 ∧ 𝑦 ∈ dom dom 𝐽 ) ) → 𝐶 ∈ ThinCat ) |
17 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ dom dom 𝐽 ∧ 𝑦 ∈ dom dom 𝐽 ) ) → dom dom 𝐽 ⊆ ( Base ‘ 𝐶 ) ) |
18 |
17 13
|
sseldd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ dom dom 𝐽 ∧ 𝑦 ∈ dom dom 𝐽 ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) |
19 |
17 14
|
sseldd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ dom dom 𝐽 ∧ 𝑦 ∈ dom dom 𝐽 ) ) → 𝑦 ∈ ( Base ‘ 𝐶 ) ) |
20 |
16 18 19 4 12
|
thincmo |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ dom dom 𝐽 ∧ 𝑦 ∈ dom dom 𝐽 ) ) → ∃* 𝑓 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) |
21 |
|
mosssn2 |
⊢ ( ∃* 𝑓 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ↔ ∃ 𝑓 ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ⊆ { 𝑓 } ) |
22 |
20 21
|
sylib |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ dom dom 𝐽 ∧ 𝑦 ∈ dom dom 𝐽 ) ) → ∃ 𝑓 ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ⊆ { 𝑓 } ) |
23 |
|
sstr2 |
⊢ ( ( 𝑥 𝐽 𝑦 ) ⊆ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) → ( ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ⊆ { 𝑓 } → ( 𝑥 𝐽 𝑦 ) ⊆ { 𝑓 } ) ) |
24 |
23
|
eximdv |
⊢ ( ( 𝑥 𝐽 𝑦 ) ⊆ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) → ( ∃ 𝑓 ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ⊆ { 𝑓 } → ∃ 𝑓 ( 𝑥 𝐽 𝑦 ) ⊆ { 𝑓 } ) ) |
25 |
15 22 24
|
sylc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ dom dom 𝐽 ∧ 𝑦 ∈ dom dom 𝐽 ) ) → ∃ 𝑓 ( 𝑥 𝐽 𝑦 ) ⊆ { 𝑓 } ) |
26 |
|
mosssn2 |
⊢ ( ∃* 𝑓 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ↔ ∃ 𝑓 ( 𝑥 𝐽 𝑦 ) ⊆ { 𝑓 } ) |
27 |
25 26
|
sylibr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ dom dom 𝐽 ∧ 𝑦 ∈ dom dom 𝐽 ) ) → ∃* 𝑓 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ) |
28 |
1 2
|
subccat |
⊢ ( 𝜑 → 𝐷 ∈ Cat ) |
29 |
8 9 27 28
|
isthincd |
⊢ ( 𝜑 → 𝐷 ∈ ThinCat ) |